• 제목/요약/키워드: E. coli XL1-blue

검색결과 28건 처리시간 0.022초

Improving the Productivity of Recombinant Protein in Escherichia coli Under Thermal Stress by Coexpressing GroELS Chaperone System

  • Kim, So-Yeon;Ayyadurai, Niraikulam;Heo, Mi-Ae;Park, Sung-Hoon;Jeong, Yong-Joo;Lee, Sun-Gu
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권1호
    • /
    • pp.72-77
    • /
    • 2009
  • Here, we demonstrate that the overexpression of the GroELS chaperone system, which assists the folding of intracellular proteins and prevents aggregation of its biological targets, can enhance the thermotolerance of Escherichia coli strains and facilitate the production of recombinant protein under thermal stress. The overexpression of GroELS led to an about 2-fold higher growth rate of E. coli XL-1 blue than control at $45^{\circ}C$ and induced the growth of the strain even at $50^{\circ}C$, although the growth was not sustained in the second-round culture. The effect of GroELS overexpression was also effective on other E. coli strains such as JM109, $DH5{\alpha}$, and BL21. Finally, we have shown that coexpression of GroELS allows us to produce recombinant protein even at $50^{\circ}C$, a temperature at which the protein production based on E. coli is not efficient. This study indicates that the employment of the GroELS overexpression system can expand the range of environmental conditions for E. coli.

코돈 최적화된 유전자를 이용한 재조합 대장균으로부터 인간 인터페론 베타 발현 (Production of Human Interferon β by Recombinant E. coli Using the Codon Optimized Gene)

  • 김종석;장승원;박재범;권덕호;장영준;정형무;한상인;홍억기;하석진
    • KSBB Journal
    • /
    • 제32권1호
    • /
    • pp.16-21
    • /
    • 2017
  • The multiple sclerosis caused by multiple inflammatory disease or immune system disorder, is usually treated by interferon ${\beta}$ through adjusting the abnormal immune reactions. For high production of human interferon ${\beta}$ using recombinant E. coli, codon optimized and wild type genes were synthesized. When pET-15b or pET-21a vector was used as an expression vector with each gene, there was no target protein expression. When pQE30 vector was used as an expression vector, human interferon ${\beta}$ was expressed by recombinant E. coli XL1-blue and E. coli JM109. Using the codon optimized gene, the expression of human interferon ${\beta}$ was slightly increased as compared to that from wild type gene. However, most of expressed human interferon ${\beta}$ was insoluble form.

유전공학적으로 변형시킨 4CB 분해세균 및 그 유전자 DNA에 대한 수계에서의 분자생태학적 안정성 (Molecular Ecological Stabilities of Genetically Modified 4CB-Degrading Bacteria and Their Gene DNAs in Water Environments)

  • Park, Sang-Ho;Myong-Ja Kwak;Ji-Young Kim;Chi-Kyung Kim
    • The Korean Journal of Ecology
    • /
    • 제18권1호
    • /
    • pp.109-120
    • /
    • 1995
  • As the genetically modified microorganisms (GMMs) and their recombinant plasmid DNAs could be released into natural environments, their stabilities and impacts to indigenous microorganisls have become very importhant research subjects concerning with environmental and ecological aspects. In this study, the genetically modified E. coli CU103 and its recombinant pCU103 plasmid DNA, in which pcbCD genes involving in degradation of biphenyl and 4-chlorobiphenyl were cloned, were studied for their survival and stability in several different waters established under laboratory conditions. E. coli CU103 and its host E. coli XL1-Blue survived longer in sterile distilled water (SDW) and filtered autoclaved river water (FAW) than in filtered river water (FW). A lot of extracellular DNAs were released from E. coli CU103 by lytic action of phages in FW and the released DNAs were degraded by DNase dissolved in the water. Such effects of the factors in FW on stability of the recombinant pCU103 plasmid were also observed in the results of gel electrophoresis, quantitative analysis with bisbenzimide, and transformation assay. Therefore, the recombinant plasmids of pCU103 were found to be readily liberated from the genetically modified E. coli CU103 into waters by normal metabolic processes and lysis of cells. And the plasmid DNAs were quite stable in waters, but their stabilities could be affected by physicoKDICical and biological factors in non-sterile natural waters.

  • PDF

Improvement of 4-chlorobiphenyl degradation bya recombinant strain, pseudomonas sp. DJ12-C

  • Kim, Ji-Young;Kim, Young-Chang;You, Lim-Jai;Lee, Ki-Sung;Ok, Ka-Jong;Hee, Min-Kyung;Kim, Chi-Kyung
    • Journal of Microbiology
    • /
    • 제35권1호
    • /
    • pp.53-60
    • /
    • 1997
  • Pseudomonas sp. P20 and Pseudomonas sp. DJ-12 isolated from the polluted environment are capable of degrading biphenyl and 4-chlorobiphenyl (4CB) to produce benzoic acid and 4-chlorobenzoic acid (4CBA) respectively, by pcbABCD-encoded enzymes. 4CBA can be further degraded by Pseudomonas sp. DJ-12, but not by Pseudomonas sp P20. However, the meta-cleavage activities of 2, 3-dihydroxybiphenyl (2, 3-DHBP) and 4-chloro-2, 3-DHBP dioxygenases (2, 3-DHBD) encoded by pcbC in Pseudomonas sp. P20 were stronger than Pseudomonas sp. DJ-12. In this study, the pcbC gene encoding 2, 3-DHBD was cloned from the genomic DNA of Pseudomonas sp. P20 by using pKT230. A hybrid plasmid pKK1 was constructed and E. coli KK1 transformant was selected by transforming the pKK1 hybrid plasmid carrying pcbC into E. coli XL1-Blue. By transferring the pKK1 plasmide of E. coli KK1 into Pseudomonas sp. DJ-12 by conjugation, a recombinant strain Pseudomonas sp. P20, Pseudomonas sp. DJ-12, and the recombinant cell assay methods. Pseudomonas sp. DJ12-C readily degraded 4CB and 2, 3-DHBP to produce 2-hydroxy-6-oxo-6-phenylhexa-2, 4-dienoic acid (HOPDA), and the resulting 4CBA and benzoic acid were continuously catabolized. Pseudomonas sp. DJ12-C degraded 1 mM 4CB completely after incubation for 20 h, but Pseudomonas sp. P20 and Pseudomonas sp. DJ-12 showed only 90% and Pseudomonas sp. DJ-12 had, but its degradation activity to 2, 3-DHBP, 3-methylcatechol, and catechol was improved.

  • PDF

Expression of Antibacterial Cationic Peptides from Methylotrophic Yeast, Pichia pastoris

  • 이강우;최윤재
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2000년도 추계학술발표대회 및 bio-venture fair
    • /
    • pp.669-671
    • /
    • 2000
  • Antimicrobial cationic peptides have attracted increasing research and clinical interest as a natural antibiotics due to their broad spectrum of antimicrobial activites and the rapid development of multidrug-resistant pathogenic microorganisms. In this study, first, we synthesized artificial fusion partner and cationic peptide genes (lactoferricin, magainin, protegrin-1, and indolicidin). Second, we constructed recombinant expression vectors and then transformed Pichia pastoris. Finally, expressed cationic peptides were purified and tested for their antimicrobial activites. Antimicrobial activity has been tested upon the appearance of clearing zone on the plate with the lawn of gram negative E.coli XL- I blue and garm positive Staphylococcus aureus. Protegrin-1 and Indolicidin have apparant activity of cationic peotides. This fusion technique may lead to a general and suitable tool for production of pure antimicrobial cationic peptides in Pichia pastoris.

  • PDF

Cloning and Characterization of a Single Chain Antibody to Glucose Oxidase from a Murine Hybridoma

  • Sellrie, Frank;Schenk, Jorg A.;Behrsing, Olaf;Drechsel, Oliver;Micheel, Burkhard
    • BMB Reports
    • /
    • 제40권6호
    • /
    • pp.875-880
    • /
    • 2007
  • Glucose oxidase (GOD) is an oxidoreductase catalyzing the reaction of glucose and oxygen to peroxide and gluconolacton (EC 1.1.3.4.). GOD is a widely used enzyme in biotechnology. Therefore the production of monoclonal antibodies and antibody fragments to GOD are of interest in bioanalytics and even tumor therapy. We describe here the generation of a panel of monoclonal antibodies to native and heat inactivated GOD. One of the hybridomas, E13BC8, was used for cloning of a single chain antibody(scFv). This scFv was expressed in Escherichia coli XL1-blue with the help of the vector system pOPE101. The scFv was isolated from the periplasmic fraction and detected by western blotting. It reacts specifically with soluble active GOD but does not recognize denatured GOD adsorbed to the solid phase. The same binding properties were also found for the monoclonal antibody E13BC8.

Cloning and Expression of a Chitinase Gene from Thermoactinomyces vulgaris KFB-C100

  • Yooh, Ho-Geun;Kim, Hee-Yun;Lim, Young-Hee;Cho, Hong-Yon
    • Journal of Microbiology and Biotechnology
    • /
    • 제8권6호
    • /
    • pp.560-567
    • /
    • 1998
  • We have found that Thermoactinomyces vulgaris KFB-Cl00 produces a chitinase. The optimum temperature and pH of the enzyme activity were $55^{\circ}C$ and 6.5. The enzyme was stable after heat treatment at $80^{\circ}C$ for 30 min and stable in acidic and basic conditions (PH 6.0~11.0). The thermostable endo-chitinase from Thermoactinomyces vulgaris KFB-C100 was cloned into the plasmid pBR322 by using E. coli DH5$\alpha$ as a host strain. The positive clone carrying a recombinant plasmid (PKCHI23) with a 4.1-kb fragment containing the chitinase gene was found. The recombinant plasmid was analyzed to determine the essential region for chitinase activity and obtained a 2.3-kb fragment, which was sub cloned into pTrc99A using the PstI and SalI sites to construct pTrc99A/pKCHI23-3. The resulting plasmid exerted high chitinase activity upon transformation of E. coli XL1-Blue cells. Chitinase was overproduced 14 times more in the clone cells than in the wild-type cells and the enzyme was purified to homogeneity. The purified enzyme showed the similar properties as the native chitinase from T. vulgaris in terms of molecular weight and substrate specificity. The catalytic action of the cloned enzyme was an endo type, producing chitobiose as a major reaction product.

  • PDF

Bacillus subtilis를 이용한 대두 발효식품의 혈전용해능

  • 정영기
    • 한국생명과학회:학술대회논문집
    • /
    • 한국생명과학회 2001년도 제32회 학술심포지움
    • /
    • pp.67-86
    • /
    • 2001
  • A strain producing strongly fibrinolytic enzyme was isolated from soil and was identified to be Bacillus subtilis by biochemical and physiological characterization. The optimal culture conditions for the production of fibrinolytic enzyme was determined to be 1.0% tryptone, 1.5% soluble starch, 0.5% Peptone, 0.5% NaCl, $(NH_{4})_{3}PO_4.3H_{2}O, and MgSO_{4}.7H_{2}O.$ Initial pH and temperature were pH 8.0 and $30^{\circ}C$ , respectively, The highest enzyme production was observed at 30 hours of cultivation at $30^{\circ}C$ The fibrinolytic enzyme was purified to homogeneity by DEAE Sephadex A-50 ion exchange column chromatography, 70% ammonium sulfate precipitation, Sephadex G-200 and G-75 gel filtration column chromatography. The molecular weight of the purified enzyme was 28,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A gene encoding the fibrinolytic enzyme was cloned into a plasmid vector pBluescript, transforming E.coli XL-1 Blue. The clone was able to degrade fibrin, This indicated that the gene could encode a fibrinolytic enzyme. The nucleotide sequence of the 2.7 kb insert was determined in both direction. One open reading frame composed of 1023 nucleotides was found to be a potential protein coding region. There was the putative Shine-Dalgano sequence and TATA box upstream of the open reading frame. The homology search data in the genome database showed that both the 2.7 kb insert and 1 kb open reading frame carried no significance in the nucleotide sequence of known fibrinolytic enzyme from Bacillus serovars. The recombinant cell harboring the novel gene involved in fibrinolysis was subjected to protein purification. The molecular mass of the purified fibrinolytic enzyme was determined to be 31864 Dalton, which was highly in accordance with the molecular mass(33 kDa) of the fibrinolytic gene deduced from the insert. The fibrinolytic enzyme was Purified 50.5 folds to homogeneity in overall yield of 10.7% by DEAE Sephadex A-50 ion exchange, 85% ammonium sulfate precipitation, Sephadex G-50, Superdex 75 HR FPLC gel filtration. In conclusion, a novel fibrinolytic gene from Bacillus subtilis was identified and characterized by cloning a genomic library of Bacillus subtilis into pBleuscript. For the soybean fermented by this strain, it is found that there increased assistant protein about 20% compared to the soybean not fermented and increased about 30% according to amino acid analysis and, in particular, essential amino acid increased about 40%. When keeping this fermented soybean powder at room temperature for about 70days, it showed very high stability maintaining almost perfect activity and, therefore, it gave us great suggestion its possibility of development as a new functional food.

  • PDF