• Title/Summary/Keyword: E. coli JM109

Search Result 51, Processing Time 0.03 seconds

Molecular Cloning and Sequencing of Cell Wall Hydrolase Gene of an Alkalophilic Bacillus subtilis BL-29

  • Kim, Tae-Ho;Hong, Soon-Duck
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.4
    • /
    • pp.223-228
    • /
    • 1997
  • A DNA fragment containing the gene for cell wall hydrolase of alkalophilic Bacillus subtilis BL-29 was cloned into E. coli JM109 using pUC18 as a vector. A recombinant plasmid, designated pCWL45B, was contained in the fragment originating from the alkalophilic B. subtilis BL-29 chromosomal DNA by Southern hybridization analysis. The nucleotide sequence of a 1.6-kb HindIII fragment containing a cell wall hydrolase-encoding gene was determined. The nucleotide sequence revealed an open reading frame (ORF) of 900 bp with a concensus ribosome-binding site located 6 nucleotide upstream from the ATG start codon. The primary amino acid sequence deduced from the nucleotide sequence revealed a putative protein of 299 amino acid residues with an M.W. of 33, 206. Based on comparison of the amino acid sequence of the ORF with amino acid sequences in the GenBank data, it showed significant homology to the sequence of cell wall amidase of the PBSX bacteriophage of B. subtilis.

  • PDF

Characterization of Carboxymethylcellulase(CMCase) Produced by Recombinant E. coli Containing CMCase Gene for Cellulomonas sp. YE-5

  • Park, Sung-Won;Her, Nam-Yun;Kim, Dong-Seob;Park, Sun-Jin;Lee, Han-Seung;Park, Hak-Jong;Yu, Ju-Hyun
    • Preventive Nutrition and Food Science
    • /
    • v.2 no.2
    • /
    • pp.174-179
    • /
    • 1997
  • CMCase produced by recombinant E. coli JM109 (pCEH#4) containing CMCase gene from Cellulomonas sp. YE-5 was purified to 24.3 fold and 2.6% yield by ammoniumsulfate precipitation, DEAE-cellulose column chromatography and gel filtration on Sephadex G-100. The optimum pH and temperature for CMCase activity were pH 7.0 and 5$0^{\circ}C$. The enzyme was stable between pH 5.0 and 10.0, and up to 6$0^{\circ}C$. The molecular weight of he enzyme was estimated to be approximately 40,000 daltons by SDS-PAGE. Analysis of the amino acid composition showed that the enzyme contained many glycines and acidic amino acids. The enzyme was an endo-type CMCase and the final enzyme reaction product from hydrolysis of Cm-cellulose by the enzyme was cellobiose. {TEX}$K_{M}${/TEX} value determined with CM-cellulose was 1.28mM.

  • PDF

Characterization of a Chromosomal Nickel Resistance Determinant from Klebsiella oxytoca CCUG 15788

  • Park, Jae-Sun;Lee, Sung-Jae;Rhie, Ho-Gun;Lee, Ho-Sa
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.6
    • /
    • pp.1040-1043
    • /
    • 2008
  • Klebsiella oxytoca CCUG 15788 is resistant to $Ni^{2+}$ at a concentration of 10 mM and grows in an inducible manner when exposed to lower concentrations of $Ni^{2+}$. The complete genomic sequence of a 4.2-kb HindIII-digested fragment of this strain was determined from genomic DNA. It was shown to contain four nickel resistance genes (nirA, nirB, nirC, and nirD) encoding transporter and transmembrane proteins for nickel resistance. When the plasmid pKOHI4, encoding nirABCD, was transformed into Escherichia coli JM109, the cells were able to grow in Tris-buffered mineral medium containing 3 mM nickel. TnphoA'-1 insertion mutants in the four nickel genes nirA, nirB, nirC, and nirD showed nickel sensitivity. The nir genes were heterogeneously expressed in E. coli, suggesting functional roles of these genes in nickel resistance.

Molecular Characterization of a ${\beta}$-1,4-Endoglucanase Gene from Bacillus subtilis H12

  • Oh, Jin-Hwan;Cha, Jeong-Ah;Yoon, Min-Ho
    • Applied Biological Chemistry
    • /
    • v.51 no.4
    • /
    • pp.299-304
    • /
    • 2008
  • A ${\beta}$-1,4-endoglucanase gene from Bacillus subtilis H12 was cloned into Escherichia coli JM109 (pBC8) and sequenced. The endoglucanase gene with an insert DNA of 2.5 kb possessed an open reading frame of 1,500 bp encoding a mature protein of 499 amino acids with a calculated molecular mass of 55 kDa. The deduced amino acid sequence showed similarity to those of the known neutral cellulase genes of B. subtilis PAP115 (99.2%) and BSE616 (97.8%), as well as the alkaline gene of Bacillus sp. N4 (55.1%). The endoglucanase activity expressed by E. coli (pBC8) was localized in the periplasmic fraction (80%) and the cytoplasmic fraction (20%). An endoglucanase was purified from the periplasmic fraction by performing gel filtration and anion exchange chromatography. The molecular weight of the purified enzyme was estimated to be 31 kDa by SDS-PAGE, and the maximum activity occurred at pH 7 and $40^{\circ}C$. The enzyme easily hydrolyzed soluble substrates such as carboxymethyl cellulose and barely ${\beta}$-glucan, whereas the sigmacell and xylan, the known insoluble substrates, were not entirely hydrolyzed.

Chaperone Assisted Overexpression of D-carbamoylase Independent of the Redox State of Host Cytoplasm

  • Sareen, Dipti;Sharma, Rakesh;Vohra, Rakesh M.
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2001.06a
    • /
    • pp.62-72
    • /
    • 2001
  • The N-carbamoyl-D-amino acid amidohydrolase (D-carbamoylase) gene (dcb) from Agrobacterium tumefaciens AM 10 has been successfully cloned and expressed in Escherichia coli. Expression of D-carbamoylase gene under the 17 promoter in different host strains showed that the optimal expression was achieved in E. coli JM109 (DE3) with a 9-fold increase in enzyme production compared to the wild-type strain. The co-expression of the GroEL/ES protein with D-carbamoylase protein caused an in vivo solubilization of D-carbamoylase in an active form. The synergistic effect of GroEL/ES at 28$^{\circ}C$ led to 60 % solubilization of the total expressed target protein with a 6.2-fold increase in enzyme activity in comparison to that expressed without GroEL/ES and 43-fold increase in enzyme activity compared to A. tumefaciens AM 10. Attempts to express D-carbamoylase in an altered redox cytoplasmic milieu did not improve the enzyme production in an active form. The Histidyl-tagged D-carbamoylase was purified in a single step by Nickel-affinity chromatography and was found to have a specific activity of 9.5 U/mg protein.

  • PDF

A Study on Microorganisms Antifouling and Optical Properties of the Sensing Membrane Surface Modified by Hydrophobic Sol-gels (소수성 졸-겔로 개질된 센서 막 표면의 미생물 비점착과 광학 특성 연구)

  • Kim, Sun-Yong;Rhee, Jong Il
    • Applied Chemistry for Engineering
    • /
    • v.19 no.2
    • /
    • pp.222-227
    • /
    • 2008
  • In this work we have studied the antifouling properties of the hydrophobic sol-gel modified sensing membrane and its optical properties for sensor application. E. coli JM109, B. cereus 318 and P. pastoris X-33 were cultivated in confocal cultivation dishes with glass surface, respectively. The glass surface was coated with the hydrophobic sol-gels prepared by the dimethoxy-dimethyl-silane (DiMe-DMOS) and tetramethyl-orthosilicate (TMOS). After cultivation, microorganisms adhered on the surface coated with sol-gels and glass surface were dyed by gram-staining method and the numbers of microorganisms were analyzed based on the image data of the scanning electronic microscope (SEM). A great number of microorganisms, about $2{\sim}3{\times}10^4/mm^2$, was adhered on the glass surfaces which no hydrophobic sol-gels were coated. However, the antifouling effect of the hydrophobic sol-gels was large, that microorganisms of less than $200{\sim}300/mm^2$ were adhered on the coated glass surface. The performance of the sensing membranes for detection of pH and dissolved oxygen was enhanced by recoating the light insulation layer prepared with the mixture of the hydrophobic sol-gel and graphite particles.

Recombinant Glargine Insulin Production Process Using Escherichia coli

  • Hwang, Hae-Gwang;Kim, Kwang-Jin;Lee, Se-Hoon;Kim, Chang-Kyu;Min, Cheol-Ki;Yun, Jung-Mi;Lee, Su Ui;Son, Young-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.10
    • /
    • pp.1781-1789
    • /
    • 2016
  • Glargine insulin is a long-acting insulin analog that helps blood glucose maintenance in patients with diabetes. We constructed the pPT-GI vector to express prepeptide glargine insulin when transformed into Escherichia coli JM109. The transformed E. coli cells were cultured by fed-batch fermentation. The final dry cell mass was 18 g/l. The prepeptide glargine insulin was 38.52% of the total protein. It was expressed as an inclusion body and then refolded to recover the biological activity. To convert the prepeptide into glargine insulin, citraconylation and trypsin cleavage were performed. Using citraconylation, the yield of enzymatic conversion for glargine insulin increased by 3.2-fold compared with that without citraconylation. After the enzyme reaction, active glargine insulin was purified by two types of chromatography (ion-exchange chromatography and reverse-phase chromatography). We obtained recombinant human glargine insulin at 98.11% purity and verified that it is equal to the standard of human glargine insulin, based on High-performance liquid chromatography analysis and Matrix-assisted laser desorption/ionization Time-of-Flight Mass Spectrometry. We thus established a production process for high-purity recombinant human glargine insulin and a method to block Arg (B31)-insulin formation. This established process for recombinant human glargine insulin may be a model process for the production of other human insulin analogs.

Cloning, Characterization of Pichia etchellsii $\beta-Glucosidase$ II and Effect of Media Composition and Feeding Strategy on its Production in a Bioreactor

  • Sethi Benu;Jain Monika;Chowdhary Manish;Soni Yogesh;Bhatia Yukti;Sahai Vikram;Mishra Saroj
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.1
    • /
    • pp.43-51
    • /
    • 2002
  • The cloning and expression of $\beta-glucosidase$ II, encoded by the gene ${\beta}glu2$, from thermotolerant yeast Pichia etchellsii into Escherichia coli is described. Cloning of the 7.3 kb BamHI/SalI yeast insert containing ${\beta}glu2$ in pUC18, which allowed for reverse orientation of the insert, resulted in better enzyme expression. Transformation of this plasmid into E. coli JM109 resulted in accumulation of the enzyme in periplasmic space. At $50^{\circ}C$, the highest hydrolytic activity of 1686 IU/g protein was obtained on sophorose. Batch and fed-batch techniques were employed for enzyme production in a 14 L bioreactor. Exponential feeding rates were determined from mass balance equations and these were employed to control specific growth rate and in turn maximize cell growth and enzyme production. Media optimization coupled with this strategy resulted in increased enzyme units of 1.2 kU/L at a stabilized growth rate of $0.14\;h^{-l}$. Increased enzyme production in bioreactor was accompanied by formation of inclusion bodies.

Expression of Cyclodextrinase Gene from Paenibacillus sp. A11 in Escherichia coli and Characterization of the Purified Cyclodextrinase

  • Kaulpiboon, Jarunee;Pongsawasdi, Piamsook
    • BMB Reports
    • /
    • v.37 no.4
    • /
    • pp.408-415
    • /
    • 2004
  • The expression of the Paenibacillus sp. A11 cyclodextrinase (CDase) gene using the pUC 18 vector in Escherichia coli JM 109 resulted in the formation of an insoluble CDase protein in the cell debris in addition to a soluble CDase protein in the cytoplasm. Unlike the expression in Paenibacillus sp. A11, CDase was primarily observed in cytoplasm. However, by adding 0.5 M sorbitol as an osmolyte, the formation of insoluble CDase was prevented while a three-fold increase in cytoplasmic CDase activity was achieved after a 24 h-induction. The recombinant CDase protein was purified to approximately 14-fold with a 31% recovery to a specific activity of 141 units/mg protein by 40-60% ammonium sulfate precipitation, DEAE-Toyopearl 650 M, and Phenyl Sepharose CL-4B chromatography. It was homogeneous by non-denaturing and SDS-PAGE. The enzyme was a single polypeptide with a molecular weight of 80 kDa, as determined by gel filtration and SDS-PAGE. It showed the highest activity at pH 7.0 and $40^{\circ}C$. The catalytic efficiency ($k_{cat}/K_m$) values for $\alpha$-, $\beta$-, and $\gamma$-CD were $3.0{\times}10^5$, $8.8{\times}10^5$, and $5.5{\times}10^5\;M^{-1}\;min^{-1}$, respectively. The enzyme hydrolyzed CDs and linear maltooligosaccharides to yield maltose and glucose with less amounts of maltotriose and maltotetraose. The rates of hydrolysis for polysaccharides, soluble starch, and pullulan were very low. The cloned CDase was strongly inactivated by N-bromosuccinimide and diethylpyrocarbonate, but activated by dithiothreitol. A comparison of the biochemical properties of the CDases from Paenibacillus sp. A11 and E. coli transformant (pJK 555) indicates that they were almost identical.

Gene Cloning and Expression of Cephalosporin-C Deacetylase from Bacillus sp. KCCM10143

  • Choi, Duk-Ho;Kim, Young-Duk;Chung, Il-Sun;Lee, Sang-Hun;Kang, Sang-Mo;Kwon, Tae-Jon;Han, Kum-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.2
    • /
    • pp.221-226
    • /
    • 2000
  • Cephalosporin-C deacetylase (CAH) catalyzes the deacetylation of cephalosporin derivatives. A novel gene encoding the CAH from Bacillus sp. KCCM10143 was cloned and sepuenced. The uncleotide sequence contained an open reading frame encoding a polypeptide consisting of 217 amino acids and a molecular weight of 24 kDa which was in good agreement with the value obtained by sodium dodecylsulfate-polyacrylamide gel electrophoresis. An expression plasmid was constructed by inserting the CAH gene into the region of the pTrc99A expression vector. An active from of the CAH protein was expressed in the soluble fraction obtained after cell disruption. in fermentation using a 5-1 jar fementer, the transformant E. coli JM109 (pDST654) produced 4.12 U of CAH per ml of culture during 16 h of incubation.

  • PDF