• 제목/요약/키워드: E. coli ATCC 11105

Search Result 4, Processing Time 0.022 seconds

Fed-batch Culture of Recombinant E.coli for the Production of Penicillin G Amidase (Penicillin G Amidase생산을 위한 재조합 대장균의 유가배양에 관한 연구)

  • Lee, Sang-Mahn
    • Microbiology and Biotechnology Letters
    • /
    • v.36 no.4
    • /
    • pp.314-319
    • /
    • 2008
  • Penicillin G amidase (PGA, benzylpenicillinaminohydrolase, EC 3.5.1.11) is industrially important enzyme which converts penicillin G to 6-aminopenicillanic acid (6-APA) and phenylacetic acid (PAA). The PGA in E. coli ATCC 11105 is secreted into the periplasm after removing signal sequences and becomes heterodimer which composed of two subunits, small subunit (24 kDa) and large subunit (65 kDa). In this study, the PGA gene was obtained from E. coli ATCC 11105 using PCR (polymerase chain reaction) technique. The active PGA was successfully secreated into periplasm in E. coli BL2 1(DE3) harboring pET-pga plasmid. The optimized fed-batch fermentation, consisting of a three-step shift of culture temperature from $37^{\circ}C$ to $22^{\circ}C$, gave a productivity of 19.6 U/mL with a cell growth of 62 O.D. at 600 nm.

One-step Purification of Poly-His Tagged Penicillin G Acylase Expressed in E. coli

  • Kim, Jin-Hee;Kang, Hye-Jin;Kim, Eung-Soo;Kim, Jeong-Ho;Koo, Yoon-Mo
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.2
    • /
    • pp.231-236
    • /
    • 2004
  • The inexpensive large-scale production of pure PGA (Penicillin G Acylase) has been a commercial goal. PGA has been used as a model enzyme in the development of simple one-step purification methods. In this study, the purification of poly-His tagged PGA protein secreted into the periplasmic space was carried out by using immobilized metal-ion affinity chromatography (IMAC). The PGA gene was obtained from E. coli ATCC 11105. Codons encoding histidines were fused at the C-terminus of the PGA gene by PCR. E. coli JM109 harboring pPGA-HIS6 vector produced active his-tagged acylases in the presence of lac promoter during cultivation at $26^{\circ}C$. The maximum specific activity of the acylase purified by using one-step chromatography after osmotic shock was 38.5 U/mg and was recovered with the yield of 70%. Both 23 kDa ($\alpha$) and 62 kDa ($\beta$) subunits were recovered by using IMAC with just C-terminus tagging of the $\beta$ subunit. The purification of the periplasmic fraction by osmotic shock and that of purified acylase was increased by 2.6-fold and 19-fold, respectively, compared to the crude extract.

Adhesion and Transport of Bacteria in Iron-coated Media (철코팅 여재에서 박테리아의 부착 및 이동)

  • Lee, Chang-Gu;Park, Seong-Jik;Choi, Nag-Choul;Kim, Song-Bae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.7
    • /
    • pp.833-838
    • /
    • 2007
  • In this study, adhesion and transport of bacteria in positively-charged media was investigated with batch and column experiments. Bacterial species used in this study was Escherichia coli ATCC 11105(length: 2.2 ${\mu}m$, diameter: 0.6 ${\mu}m$) and media used were quartz sand(particle size distribution: 0.5-2.0 mm, mean diameter: 1.0 mm) and iron-coated sand. Batch results indicate that bacterial adhesion increased as the content of iron-coated media increased. At iron-coated media 0%(quartz sand 100%), around 46% of bacteria was adhered to media while at iron-coated media 100%(quartz sand 0%) about 97% was attached. Column results also show that bacterial adhesion was enhanced with an increase of iron-coated media content. As the iron-coated media content increased from 0 to 100%, bacterial adhesion increased from 8 to 94%. The experimental results demonstrate that positively-charged media could influence transport of bacteria in porous media.

Quantification of Bacterial Attachment-related Parameters in Porous Media

  • Park, Seong-Jik;Lee, Chang-Gu;Kim, Song-Bae
    • Environmental Engineering Research
    • /
    • v.13 no.3
    • /
    • pp.141-146
    • /
    • 2008
  • Transport of Escherichia coli ATCC 11105 through porous media was investigated in this study using two sets of column experiments to quantify the attachment-related parameters (sticking efficiency, attachment rate coefficient and filter factor). The first set of experiments was performed in quartz sand under different ionic strength conditions (1, 20, 100, 200 mM) while the second experiments were carried out in quartz sand mixed with metal oxyhydroxide-coated sand (0, 5, 10, 25%). The breakthrough curves of bacteria were obtained by monitoring effluent, and then bacterial mass recovery and attachment-related parameters were quantified from these curves. The first experiments showed that the mass recoveries were in the range of 13.3 to 64.7%, decreasing with increasing ionic strength. In the second experiments, the mass recoveries were in the range of 15.0 to 43.4%, decreasing with increasing coated sand content. The analysis indicated that the sticking efficiency, attachment rate coefficient and filter factor increased with increasing ionic strength and coated sand content. The value of filter factor in the first experiments ranged from 1.45 e-2 to 6.72 e-2 1/cm while in the second experiments it ranged from 2.78 e-2 to 6.32 e-2 1/cm. Our filter factor values are one order of magnitude lower than those from other studies. This discrepancy can be attributed to the size of sand used in the experiment. The analysis demonstrated that the travel distance of bacteria estimated using the filter factor can be varied greatly depending on the solution chemistry and charge heterogeneity of porous media.