• Title/Summary/Keyword: E. Chemical vapor deposition

Search Result 226, Processing Time 0.025 seconds

Deposition of Epitaxial Silicon by Hot-Wall Chemical Vapor Deposition (CVD) Technique and its Thermodynamic Analysis

  • Koh, Wookhyun;Yoon, Deoksun;Pa, ChinHo
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1998.06a
    • /
    • pp.173-176
    • /
    • 1998
  • Epitaxial Si layers were deposited on n- or p-type Si(100) substrates by hot-wall chemical vapor deposition (CVD) technique using the {{{{ {SiH }_{ 2} {Cl }_{2 } - {H }_{ 2} }}}}chemistry. Thermodynamic calculations if the Si-H-Cl system were carried out to predict the window of actual Si deposition procedd and to investigate the effects of process variables(i.e., the deposition temperature, the reactor pressure, and the source gas molar ratios) on the growth of epitaxial layers. The calculated optimum process conditions were applied to the actual growth runs, and the results were in good agreement with the calculation. The expermentally determined optimum process conditions were found to be the deposition temperature between 900 and 9$25^{\circ}C$, the reactor pressure between 2 and 5 Torr, and source gad molar ration({{{{ {H }_{2 }/ {SiH }_{ 2} {Cl }_{2 } }}}}) between 30 and 70, achieving high-quality epitaxial layers.

  • PDF

Characterization of Diamond-like Carbon Films Prepared by Magnetron Plasma Chemical Vapor Deposition

  • Soung Young Kim;Jai Sung Lee;Jin Seok Park
    • The Korean Journal of Ceramics
    • /
    • v.4 no.1
    • /
    • pp.20-24
    • /
    • 1998
  • Thin films of diamond-like carbon(DLC) can be successfully deposited by using a magnetron plasma chemical vapor deposition (CVD) method with an rf(13.56 MHz) plasma of $C_dH_8$. Plasma characteristics are analyzed as a function of the magnetic field. As the magnetic field increases, both electron temperature ($T_e$) and density ($n_e$)increase, but the negative dc self-bias voltage (-$V_{ab}$) decreases, irrespective of gas pressures in the range of 1~7 mTorr. High deposition rates have been obtained even at low gas pressures, which may be attributed to the increased mean free path of electrons in the magentron plasma. Effects of rf power and additive gas on the structural properties of DLC films aer also examined by using various technique namely, TED(transmissio electron diffraction) microanalysis, FTIR, and Raman spectroscopies.

  • PDF

Mechanical Properties of Chemical-Vapor-Deposited Silicon Carbide using a Nanoindentation Technique

  • Kim, Jong-Ho;Lee, Hyeon-Keun;Park, Ji-Yeon;Kim, Weon-Ju;Kim, Do-Kyung
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.9
    • /
    • pp.518-523
    • /
    • 2008
  • The mechanical properties of silicon carbide deposited by chemical vapor deposition process onto a graphite substrate are studied using nanoindentation techniques. The silicon carbide coating was fabricated in a chemical vapor deposition process with different microstructures and thicknesses. A nanoindentation technique is preferred because it provides a reliable means to measure the mechanical properties with continuous load-displacement recording. Thus, a detailed nanoindentation study of silicon carbide coatings on graphite structures was conducted using a specialized specimen preparation technique. The mechanical properties of the modulus, hardness and toughness were characterized. Silicon carbide deposited at $1300^{\circ}C$ has the following values: E=316 GPa, H=29 GPa, and $K_c$=9.8 MPa $m^{1/2}$; additionally, silicon carbide deposited at $1350^{\circ}C$ shows E=283 GPa, H=23 GPa, and $K_c$=6.1 MPa $m^{1/2}$. The mechanical properties of two grades of SiC coating with different microstructures and thicknesses are discussed.

Temperature Dependence of Excitonic Transitions in GaN Grown by MOCVD

  • Guangde Chen;Jingyu Lin;Hongxing Jiang;Kim, Jung-Hwan;Park, Sung-Eul
    • Journal of Photoscience
    • /
    • v.7 no.1
    • /
    • pp.27-30
    • /
    • 2000
  • The Photoluminescence (PL) measurement results of a very good quality GaN sample grown by metalorganic chemical vapor deposition (MOCVD) are reported. The temperature dependences of peak position, emission intensity, and the full width at half maximum (FWHM) of free-exciton (FX) A and B are presented. Our results show the fast thermal quenching of FX transition intensities and predominantly acoustic phonon scattering of emission line broadening. The transition-energy-shift following the Varshni's empirical equation, and by using it to fit the data, E$\_$A1/(T) = 3.4861 eV -6.046 $\times$ 10$\^$-4/T$^2$ (620.3+ T) eV, E$\_$B1/(T) = 3.4928 eV -4.777 $\times$ 10$\^$-4/T$^2$ / (408.2+ T) eV and E$\_$A2/ = 3.4991 eV -4.426 $\times$ 10$\^$-4/ T$^2$ / (430.6+ T) eV for A(n=1), B(n=1), and A(n=2) are obtained respectively.

  • PDF

Empirical relationship between band gap and synthesis parameters of chemical vapor deposition-synthesized multiwalled carbon nanotubes

  • Obasogie, Oyema E.;Abdulkareem, Ambali S.;Mohammed, Is'haq A.;Bankole, Mercy T.;Tijani, Jimoh. O.;Abubakre, Oladiran K.
    • Carbon letters
    • /
    • v.28
    • /
    • pp.72-80
    • /
    • 2018
  • In this study, an empirical relationship between the energy band gap of multi-walled carbon nanotubes (MWCNTs) and synthesis parameters in a chemical vapor deposition (CVD) reactor using factorial design of experiment was established. A bimetallic (Fe-Ni) catalyst supported on $CaCO_3$ was synthesized via wet impregnation technique and used for MWCNT growth. The effects of synthesis parameters such as temperature, time, acetylene flow rate, and argon carrier gas flow rate on the MWCNTs energy gap, yield, and aspect ratio were investigated. The as-prepared supported bimetallic catalyst and the MWCNTs were characterized for their morphologies, microstructures, elemental composition, thermal profiles and surface areas by high-resolution scanning electron microscope, high resolution transmission electron microscope, energy dispersive X-ray spectroscopy, thermal gravimetry analysis and Brunauer-Emmett-Teller. A regression model was developed to establish the relationship between band gap energy, MWCNTs yield and aspect ratio. The results revealed that the optimum conditions to obtain high yield and quality MWCNTs of 159.9% were: temperature ($700^{\circ}C$), time (55 min), argon flow rate ($230.37mL\;min^{-1}$) and acetylene flow rate ($150mL\;min^{-1}$) respectively. The developed regression models demonstrated that the estimated values for the three response variables; energy gap, yield and aspect ratio, were 0.246 eV, 557.64 and 0.82. The regression models showed that the energy band gap, yield, and aspect ratio of the MWCNTs were largely influenced by the synthesis parameters and can be controlled in a CVD reactor.

Dielectric properties of Pr$_2$O$_3$ high-k films grown by metalorganic chemical vapor deposition on silicon

  • Nigro, Raffaella-Lo;Vito Raineri;Corrado Bongiomo
    • Electrical & Electronic Materials
    • /
    • v.16 no.9
    • /
    • pp.65.2-65
    • /
    • 2003
  • Praseodymium oxid ($Pr_2$$O_3$) thin films have been deposited on Si(100) substrates by metalorganic chemical vapor deposition using praseodymium tris-2,2,6,6-tetramethyl-3,5-heptandionate as source material. Film structural, morphological, and compositional characterizations have been carried out. Dielectric properties have been studied as well by capacitance-voltage and current-voltage measurements on metal-oxide-semiconductor capacitors of several areas. The $Pr_2$$O_3$ films have shown a dielectric constant = 23-25 and a leakage current density of $8.8{\times}10$-e $A/\textrm{mm}^2$ at +1 V.

  • PDF

Synthesis of Diamond Thin Film by Helicon Plasma Chemical Vapor Deposition

  • Hyun, Jun-Won;Kim, Yong-Kin
    • Transactions on Electrical and Electronic Materials
    • /
    • v.1 no.1
    • /
    • pp.1-5
    • /
    • 2000
  • Diamond films have been achieved on Si(100) substrates using helicon plasma chemical vapor deposition(HPCVD), Gas mixtures with methane and hydrogen have been used. The growth characteristics were investigated by means of X-ray photoelectroton spectroscopy, Atomic force microscopy and X-ray diffraction. We obtained a plasma density as high as 10$\^$10/~10$\^$11/ cm$\^$-3/ by helicon source. The smooth(100) faces of submicron diamond crystallites were found to exhibit pyramidal shaped architecture, The XPS spectrum for the nucleation layer indicates the presence of diamond at 285.4 eV, close to the reported value of 285.5 eV for diamond , XRD results demonstrates the existence of polycrystalline diamond as the diamond (111) and (220) peaks.

  • PDF

Crystallographic Relationships of (Ba, Sr) $TiO_3$Thin Film Prepared by Metal-Organic Chemical Vapor Deposition on (111) Textured Pt Electrode

  • Yoo, Dong-Chul;Lee, Jeong-Yong
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.11
    • /
    • pp.1126-1129
    • /
    • 2000
  • The crystallographic orientations of $Ba_{0.6}$S $r_{0.4}$Ti $O_3$(BST) thin film deposited by a metal-organic chemical vapor deposition on (111) textured Pt electrode were studied with a transmission electron microscopy. The fully crystallized BST thin film (50nm) has (100) and (110) preferred orientations. A high resolution transmission electron microscopy study has revealed the crystallographic orientation relationships between BST thin film and Pt electrode. These relationships explained the preferred orientation of BST film on (111) textured Pt electrode. With these results, we could represent the atomic arrangement at the BST/Pt interface.e.e.

  • PDF

Preparation of $Ba_{1-x}Sr_xTiO_3$thin films by metal by metal-organic chemical vapor deposition and electrical properties. (Preparation of $Ba_{1-x}Sr_xTiO_3$ thin films by metal-organic chemical vapor deposition and electrical properties)

  • Yoon, Jong-Guk;Yoon, Soon-Gil;Lee, Won-Jae;Kim, Ho-Gi
    • Journal of the Korean Vacuum Society
    • /
    • v.5 no.1
    • /
    • pp.62-66
    • /
    • 1996
  • $(Ba_{1-x}Sr_xTiO_3$ (BST) thin films have been grown on Pt-coated MgO by metal -organic chemical vapor deposition. X-ray diffraction results showed that BST films were grown on a Pt/MgO substrate with (100) preferred orientation perpendicular to the surface. The lineawr relationship of P-E curve obtained form hysteresis loop measurement indicated that the BST films had a Curie transitions below room temperature . Films deposited at $900^{\circ}C$ exhibited a smooth and dense microstructure, a dielectric constant of 202, and a dissipation facotr of 0.02 at 100kHz. The leakage current density of the BST films is about $2\times10^{-10} \;A/\textrm{cm}^2$$ at an applied electric field of 0.2 MV/cm. The electrical behavior on the current-voltage characteristics is well explained by the bulk-limited Pool-Frenkel emission.

  • PDF

Graphene synthesis by chemical vapor deposition on Cu foil

  • Kim, Sung-Jin;Yoo, Kwon-Jae;Seo, E.K.;Boo, Doo-Wan;Hwang, Chan-Yong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.351-351
    • /
    • 2011
  • Graphene has drawn great interests because of its distinctive band structure and physical properties[1]. A few of the practical applications envisioned for graphene include semiconductor applications, optoelectronics (sola cell, touch screens, liquid crystal displays), and graphene based batteries/super-capacitors [2-3]. Recent work has shown that excellent electronic properties are exhibited by large-scale ultrathin graphite films, grown by chemical vapor deposition on a polycrystalline metal and transferred to a device-compatible surface[4]. In this paper, we focussed our scope for the understanding the graphene growth at different conditions, which enables to control the growth towards the application aimed. The graphene was grown using chemical vapor deposition (CVD) with methane and hydrogen gas in vacuum furnace system. The grown graphene was characterized using a scanning electron microscope(SEM) and Raman spectroscopy. We changed the growth temperature from 900 to $1050^{\circ}C$ with various gas flow rate and composition rate. The growth condition for larger domain will be discussed.

  • PDF