• Title/Summary/Keyword: E-fuel

Search Result 843, Processing Time 0.034 seconds

A Study on Aircraft Fuel Requirements (항공기 연료탑재 기준에 관한 연구)

  • Noh, K.S.;Choi, Y.C.;Yoo, K.E.
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.13 no.1
    • /
    • pp.9-19
    • /
    • 2005
  • Airplane fuel takes large portion of airline operation cost and recently it has been grown up to about 25% of operating cost. So airlines are making efforts to reduce fuel consumption continuously and also aircraft manufacturers are making efforts to develop less fuel-consuming engines but it takes great expenses and times to develop such engines. In this study, fuel requirements of FAR and JAR, especially contingency fuel requirements, are compared and the effectiveness of each method is analyzed.

  • PDF

The State of the Art of the Fuel Cells (연료전지 기술현황)

  • Lee, Jin-Hong;ShunWoo, Hyun-Bum
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.3-12
    • /
    • 1991
  • Fuel cells are electrochemical devices that convert the chemical reaction energy directly into the electrical energy. In a typical fuel cell, gaseous fuel is fed continuously to the anode(negative electrode) compartment and the oxidant(i.e, oxygen from air) is fed continuously to the cathode(positive electrode) compartment; the electrochemical reactions take place at the electrodes to produce an electric current. Many of the operational characteristics of fuel cell systems are superior to those of conventional power generation system because of good efficiency, environmental protection, safty, modularity etc. From those reasons, the fuel cells are considered to be the solution to the future problem of energy conversion. The objective of this paper is to introduce the technical status of fuel cell technologies and our national project for the development of the phosporic acid fuel cell.

  • PDF

A Study on the Lean Combustion of the Gasoline Engine with Air Assisted Fuel Injection System (공기 보조 연료 분사 장치가 있는 가솔린 기관의 희박 연소에 관한 연구)

  • Kim, S.W.;Kim, E.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.2
    • /
    • pp.117-123
    • /
    • 1994
  • This paper describes the effect of air assisted fuel injection system(AAI) using compressed air to improve the performance of lean combustion engine. AAI is designed to promote fuel atomization and intake flow. In order to investigate the performance of engine with AAl, experiments are conducted varying the engine revolution speed, lean air-fuel ratio and intake manifold pressure. Compared with the original engine, the performance of the engine with MI is improved as the air-fuel mixture becomes leaner or the engine load becomes lower. The descreasing rate of BSFC is propotional to the relative air-fuel ratio and the lean misfire limit extended more than 0.2 relative airfuel ratio.

  • PDF

Vibration of Initially Stressed Beam with Discretely Spaced Multiple Elastic Supports

  • Park, Nam-Gyu;Lee, Seong-Ki;Kim, Hyeong-Koo;Park, Ki-Sung
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.733-741
    • /
    • 2004
  • Vibration behavior of an initially stressed beam on discretely spaced multiple elastic supports has been studied and a theoretical formulation of the system is derived using the variational principle. Unlike beams on an elastic foundation, discretely spaced supports can distort the beam mode shapes when the supports have rather large stiffness, i.e. usually expected beam modes cannot be obtained, but rather irregular mode shapes are observed. Conversely, irregular modes can be recovered by changing initial stress. Since support location is closely associated with the dynamic characteristics, this work also discusses eigenvalue sensitivity with respect to the support position and some numerical examples are investigated to illustrate the above findings.

Evaluation of the Middle Part of the Nuclear Fuel Cycle

  • Kovac, Michal
    • Nuclear Engineering and Technology
    • /
    • v.48 no.1
    • /
    • pp.169-174
    • /
    • 2016
  • This article describes a comprehensive methodology for the evaluation of the middle part of nuclear fuel cycles. Evaluation of fuel cycles is basically divided into two parts. The first comprises nuclear calculation, i.e., creation of the strategy for nuclear fuel reloading and core design calculations. The second part is the business-economic evaluation of the selected reloading strategy, which can be done either by financial analysis or economic analysis. The financial analysis incorporates the perspectives of a company while the economic analysis can be used primarily by national economists or politicians. This methodology was applied to a case study that is focused on impacts of switching from a 12-month to an 18-month fuel cycle strategy for Water-Water Energetic Reactor (VVER)-1000 reactors.