• Title/Summary/Keyword: E-beam

Search Result 1,958, Processing Time 0.025 seconds

Influence of surface geometrical structures on the secondary electron emission coefficient $({\gamma})$ of MgO protective layer

  • Park, W.B.;Lim, J.Y.;Oh, J.S.;Jeong, H.S.;Jeong, J.C.;Kim, S.B.;Cho, I.R.;Cho, J.W.;Kang, S.O.;Choi, E.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.806-809
    • /
    • 2003
  • Ion-induced secondary electron emission coefficient $({\gamma})$. of the patterned MgO thin film with geometrical structures has been measured by ${\gamma}$ - FIB(focused ion beam) system. The patterned MgO thin film with geometrical structures has been formed by the mask (mesh of ${\sim}$ $10{\mu}m^{2})$ under electron beam evaporation method. It is found that the higher ${\gamma}$. has been achieved by the patterned MgO thin film than the normal ones without patterning.

  • PDF

Analytical solution for bending analysis of functionally graded beam

  • Sallai, Benoumrane;Hadji, Lazreg;Daouadji, T. Hassaine;Adda Bedia, E.A.
    • Steel and Composite Structures
    • /
    • v.19 no.4
    • /
    • pp.829-841
    • /
    • 2015
  • In this paper, a refined exponential shear deformation beam theory is developed for bending analysis of functionally graded beams. The theory account for parabolic variation of transverse shear strain through the depth of the beam and satisfies the zero traction boundary conditions on the surfaces of the beam without using shear correction factors. Contrary to the others refined theories elaborated, where the stretching effect is neglected, in the current investigation this so-called "stretching effect" is taken into consideration. The material properties of the functionally graded beam are assumed to vary according to power law distribution of the volume fraction of the constituents. Based on the present shear deformation beam theory, the equilibrium equations are derived from the principle of virtual displacements. Analytical solutions for static are obtained. Numerical examples are presented to verify the accuracy of the present theory.

Measurement of ion induced secondary electron emission $coefficient({\gamma})$ and work function of vacuum annealed MgO protective layer in AC PDP

  • Lim, J.Y.;Jeong, H.S.;Park, W.B.;Oh, J.S.;Jeong, J.M.;Choi, E.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.799-801
    • /
    • 2003
  • The secondary electron emission $coefficient({\bullet})$ of vacuum annealed MgO films has been investigated by ${\bullet}$ -focused ion beam(${\bullet}$ -FIB) system. The vacuum annealed MgO films have been found to have higher ${\bullet}$ values than those for as-deposited MgO films for Ne+ ion. Also it is found that the ${\bullet}$ for air-hold of vacuum annealed MgO layers for 24-hours is similar to that for vacuum annealed MgO films without any air-hold.

  • PDF

A higher order shear deformation theory for static and free vibration of FGM beam

  • Hadji, L.;Daouadji, T.H.;Tounsi, A.;Bedia, E.A.
    • Steel and Composite Structures
    • /
    • v.16 no.5
    • /
    • pp.507-519
    • /
    • 2014
  • In this paper, a higher order shear deformation beam theory is developed for static and free vibration analysis of functionally graded beams. The theory account for higher-order variation of transverse shear strain through the depth of the beam and satisfies the zero traction boundary conditions on the surfaces of the beam without using shear correction factors. The material properties of the functionally graded beam are assumed to vary according to power law distribution of the volume fraction of the constituents. Based on the present higher-order shear deformation beam theory, the equations of motion are derived from Hamilton's principle. Navier type solution method was used to obtain frequencies. Different higher order shear deformation theories and classical beam theories were used in the analysis. A static and free vibration frequency is given for different material properties. The accuracy of the present solutions is verified by comparing the obtained results with the existing solutions.

Influence of Crack on Dynamic Behavior of Simply Supported Beam with Moving Mass (이동질량을 가진 단순지지 보의 동특성에 미치는 크랙의 영향)

  • 윤한익;이용운;손인수
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.9
    • /
    • pp.720-729
    • /
    • 2003
  • An iterative modal analysis approach is developed to determine the effect of transverse open cracks on the dynamic behavior of simply supported Euler-Bernoulli beam with the moving mass. The influences of the depth and the position of the crack in the beam have been studied on the dynamic behavior of the simply supported beam system by numerical method. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments i.e. the crack is modelled as a rotational spring. This flexibility matrix defines the relationship between the displacements and forces across the crack section and is derived by applying fundamental fracture mechanics theory. As the depth of the crack is increased the frequency of the simply supported beam with the moving mass is increased.

Modeling and fast output sampling feedback control of a smart Timoshenko cantilever beam

  • Manjunath, T. C.;Bandyopadhyay, B.
    • Smart Structures and Systems
    • /
    • v.1 no.3
    • /
    • pp.283-308
    • /
    • 2005
  • This paper features about the modeling and design of a fast output sampling feedback controller for a smart Timoshenko beam system for a SISO case by considering the first 3 vibratory modes. The beam structure is modeled in state space form using FEM technique and the Timoshenko beam theory by dividing the beam into 4 finite elements and placing the piezoelectric sensor/actuator at one location as a collocated pair, i.e., as surface mounted sensor/actuator, say, at FE position 2. State space models are developed for various aspect ratios by considering the shear effects and the axial displacements. The effects of changing the aspect ratio on the master structure is observed and the performance of the designed FOS controller on the beam system is evaluated for vibration control.