• Title/Summary/Keyword: E-Scooter

Search Result 16, Processing Time 0.023 seconds

Numerical Analysis on development of the Cooling System for E-Scooter Battery Pack (전동스쿠터용 배터리팩 냉각시스템 개발을 위한 수치해석)

  • Lee, Suk Young
    • Journal of Energy Engineering
    • /
    • v.25 no.4
    • /
    • pp.30-36
    • /
    • 2016
  • The battery pack which is a main component of E-scooter needs the cooling system because it is the matter of battery safety in spite of the incresing of charge efficiency due to decress the internal resistence in the condition of high temperature. The purpose of this study is to analyse the effects of cooling methods which is the control of air's inlet and outlet operating timing. When each battery had large temperature deviation in the battery pack, the difference of battery's performance and efficiency were appeared. In this study, the cooling performance of battery pack has been improved by changing the operation timing of inlet and outlet fan, it improved the performance and efficiency of battery. The numerical analysis using a commercial code ANSYS CFX version 17.0 were used for the study.

Station Extension Algorithm Considering Destinations to Solve Illegal Parking of E-Scooters

  • Jeongeun, Song;Yoon-Ah, Song;ZoonKy, Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.2
    • /
    • pp.131-142
    • /
    • 2023
  • In this paper, we propose a new station selection algorithm to solve the illegal parking problem of shared electric scooters and improve the service quality. Recently, as a solution to the urban transportation problem, shared electric scooters are attracting attention as the first and last mile means between public transportation and final destinations. As a result, the shared electric scooter market grew rapidly, problems caused by electric scooters are becoming serious. Therefore, in this study, text data are collected to understand the nature of the problem, and the problems related to shared scooters are viewed from the perspective of pedestrians and users in 'LDA Topic Modeling', and a station extension algorithm is based on this. Some parking lots have already been installed, but the existing parking lot location is different from the actual area of tow. Therefore, in this study, we propose an algorithm that can install stations at high actual tow density using mixed clustering technology using K-means after primary clustering by DBSCAN, reflecting the 'current state of electric scooter tow in Seoul'.

Analyzing Intention to Use Shared E-scooters Considering Individual Travel Attitudes : The Case of Seoul Metropolitan Areas (개인 통행성향을 고려한 공유 전동킥보드 이용의향 분석: 서울시를 중심으로)

  • Lee, Yoonhee;Koo, Jahun;Choo, Sangho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.1
    • /
    • pp.1-16
    • /
    • 2022
  • Recently, e-scooters have been attracting attention as eco-friendly modes of transportation in cities due to an increasing interest in the environment. Accordingly, various studies on usage behavior are being conducted, but studies that reflect individual travel attitudes are insufficient. Therefore, this study surveyed commuters in Seoul and analyzed respondents' traveling attitudes through factor analysis. It also built a binary logistic regression model for the intention to use shared e-scooters to determine how individual travel behaviors are affected. In particular, the model results showed that age, the main mode of transportation (car), walking time to the bus stop, and four travel attitude variables (disutility of travel, preference to self-drive, internet/smartphone friendliness, and willingness to pay extra money for services) significantly affected the intention to use shared e-scooters. This study is expected to be used as basic data, with aspect to travel behavior, for the efficient operation and use of shared e-scooters in the future.

Prediction Method of End of Charge Voltage using Battery Parameter Measurement (배터리 파라미터 측정을 이용한 충전종지전압 예측기법)

  • Kim, Ho-Yong;Wang, Yi-Pei;Park, Seong-Mi;Park, Sung-Jun;Son, Gyung-Jong
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.3
    • /
    • pp.387-396
    • /
    • 2022
  • Recently, e-Mobility, which is a personal mobility device such as an electric bicycle or an electric scooter, is rapidly emerging. However, since E-Mobility has various voltage systems due to the characteristics of its products, it is essential for companies that operate them to use multiple dedicated chargers. A universal charger capable of charging batteries of various voltage systems with one charger is required to reduce the cost of purchasing and managing multiple dedicated chargers. For this, information on the EOC(End of Charge) is essential. In order to know the EOC, it is necessary to detect the internal impedance of the battery. However, the internal impedance of the battery changes according to various conditions such as SOH(State Of Health), SOC(State Of Charge), and ambient temperature. By observing the change in these parameters, the state of the battery can be diagnosed and the EOC can be predicted. In this paper, we propose an algorithm to analyze the battery's internal impedance and to predict the EOC, in order to acquire information on the EOC of the battery, which is an essential requirement of a universal charger.

The effect of wearing a helmet on head injury risks among personal mobility vehicle riders: A study of patients who visited a regional emergency medical center due to traffic accidents (개인형 이동수단별 헬멧 착용 유무가 두부 손상에 미치는 영향: 일개 권역응급의료센터에 교통사고로 내원한 환자를 대상으로)

  • So-Yeon An;Yong-Joon Kim;Kyoung-Yul Sim;Kyoung-Youl Lee
    • The Korean Journal of Emergency Medical Services
    • /
    • v.27 no.2
    • /
    • pp.7-17
    • /
    • 2023
  • Purpose: This study aimed to identify the factors that contribute to head injuries among drivers of personal mobility devices and provide insights into safety perceptions. Methods: This retrospective study analyzed data of 221 trauma patients obtained from electronic medical records and the National Emergency Department Information System (NEDIS) over one year, from August 1, 2021, to July 31, 2022. The patients, all in their 20s and 30s, presented to a single emergency medical center following personal mobility device accidents (motorcycles, electric scooters, and bicycles). Results: Among motorcycle riders, 18.2% were not wearing helmets, while the percentage of e-scooter riders not wearing helmets was 87.5%. Wearing a helmet was associated with a 71.2% lower likelihood of head injuries (OR=0.288, CI=0.163 to 0.509, p=0.000). Of the personal mobility devices, motorcycles had a 0.431 times lower odds ratio for head injury compared to e-scooters (p=0.009), and there was no significant difference between e-scooters and bicycles (p=0.776). Conclusion: It is imperative to strengthen safety regulations by mandating helmet use for riders of personal mobility devices. A system to enhance driving enforcement for electric scooters, which are increasingly popular among young adults, should also be established.

Optimizing Locations for Micro-mobility Parking Area based on User Big-data Analysis (빅데이터 기반 공유형 마이크로 모빌리티의 주차시설 입지 최적화 연구)

  • Choi, Nakhyeon;Kim, Junghwa
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.195-206
    • /
    • 2023
  • Most of the Micro-mobility parking in Korea use Dockless system. However, Dockless can result in cluttering, infrastructure deficiencies, and safety challenges as has been observed in cities. It is necessary to introduce a Station Parking system in order to solve the drawbacks of the dockless, but the introduction without engineering has low accessibility and induces side effects. In this study, to decide optimal location about number of the Micro-mobility Station, we has been applied the MCLP model about the coverage range, usage demand, usage time in order to classify the type of Micro-mobility Station. For the MCLP, User Date input to reflect realistic demand in Bundang new town, Korea. The result show that the optimal number of facilities in 400 m was 146, and the coverage ratio was 99.83 %, which was most suitable coverage for solving the parking problem. We also classified the demand into 4 levels and the usage time into 3 levels, and by crossing them, we were able to classify the Parking lot types into 12 types. It is possible to propose strategic policies in the installation and operation of Micro-mobility Parking System.