• 제목/요약/키워드: E-R diagram

검색결과 59건 처리시간 0.029초

각분해 광전자분석 실험을 이용한 $Sm_{1.82}Ce_{0.18}CuO_4$ 물질의 온도에 따른 가짜 갭 연구 (Temperature Dependent Angle Resolved Photoemission Spectroscopy Study of Pseudo-gaps in $Sm_{1.82}Ce_{0.18}CuO_4$)

  • 송동준;최환영;김철;박승룡;김창영
    • Progress in Superconductivity
    • /
    • 제11권2호
    • /
    • pp.83-86
    • /
    • 2010
  • There are theoretical and experimental evidences for the pseudo-gap in electron doped cuprates being due to interaction between electrons and anti-ferromagnetism(AFM). A remaining issue is on how AFM correlates with pseudo-gap, and eventually with superconductivity. To elucidate the issue, we have performed temperature dependent angle-resolved photoemission studies of an e-doped cuprate superconductor $Sm_{2-x}Ce_xCuO_4$(SCCO) x=0.18 at 20K and 150K. In the case of $Nd_{2-x}Ce_xCuO_4$, the most well known e-doped cuprate, pseudo-gap disappears at around 100 K for x=0.17. Our experimental result reveals that the pseudo-gap of SCCO exists even at 150K for x=0.18. This result implies that the AFM of SCCO survives even in x=0.18, which agrees with previously reported phase diagram of SCCO. Yet, the superconductivity disappears around x=0.18 for both NCCO and SCCO in spite of the difference in the magnetic order. This result sheds a light on the disappearance of superconductivity on the over-doped side.

경량 복합재 대차프레임의 피로수명 및 강도 평가 (An Evaluation of Fatigue Life and Strength of Lightweight Bogie Frame Made of Laminate Composites)

  • 전광우;신광복;김정석
    • 대한기계학회논문집A
    • /
    • 제35권8호
    • /
    • pp.913-920
    • /
    • 2011
  • 본 논문은 4-매 주자직 유리섬유/에폭시 적층 복합재가 적용된 철도차량 경량 대차프레임의 피로 수명 및 강도 평가에 대해 기술한다. 대차프레임 경량화 재질로 적용된 유리섬유/에폭시 4-매 주자직 적층 복합재료의 피로특성 평가를 위하여 경사, 위사 그리고 $0^{\circ}/90^{\circ}$ 방향으로 적층된 시험편에 대하여 인장-압축 피로시험을 수행하였다. 유리섬유/에폭시 4-매 주자직 적층 복합재료의 피로시험은 5Hz의 주파수, -1의 응력비(R), $10^7$의 피로수명을 갖도록 하였다. 또한, JIS E 4207의 하중조건에 따른 대차프레임의 피로강도 평가를 Goodman 선도를 통하여 수행하였다. 유리섬유/에폭시 적층 복합재 경량 대차프레임의 피로수명 및 강도 평가기준을 만족하였으며, 무게를 고려할 경우 기존 대차프레임 재질인 SM490A 금속재에 비하여 우수한 피로특성을 갖는다.

軟鋼의 高溫 表面渡勞균열 成長擧動에 관한 硏究 (A Study on Propagation Behavior of Surface-Fatigue-Crack in the Mild Steel at Elevated Temperatures)

  • 김규남;서창민;;강성수
    • 대한기계학회논문집
    • /
    • 제7권4호
    • /
    • pp.425-433
    • /
    • 1983
  • Fatigue tests by axial loading (R=0.1) were carried out to investigate fatigue crack growth properties of small surface cracks in mild steel at room temperature, 250.deg. C and 400.deg. C, by using flat specimens with a small artificial pit. All the data of the fatigue crack growth rate obtained in the present tests are determined as a function of the stress intensity factor range, so that the applicability of liner fracture mechanics to the fatigue crack growth of surface cracks at elevated temperatures is investigated and discussed in comparison with the data of type 304 stainless steel at room temperature and elevated temperature. The obtained results are as follows: 1) Relations of both surface fatigue crack length and its depth to cycle ratio fall within a narrow scatter band in spite of different stress levels. 2) The .DELTA. .sigma. .root. .pi. a-da/dN relation of surface fatigue crack growth at room temperature is independent of the stress level and can be plotted as a straight line at log-log diagram, but the relation at 400.deg. C depends partly on the stress level. 3) Relations of the fatigue crack growth into depth d(2b)/dN and is stress intensity factor range .DELTA. $K_{I}$, accounted for the aspect ratio variation, fall within a narrow scatter band for wide range of the applied stress levels. And .DELTA. $K_{I}$E-d(2b)/dN relations of mild steel at different stress level coincide relatively well with the data of type 304 stainless steel. 4) The value of aspect ratio obtained by a beach mark method and a temper coloring method approaches about 0.9 in common with crack growth and it is independent of stress level and temperatures. 5) The equi-crack length curve is parallel to S-N$_{f}$ curve at elevated temperatures.s.s.s.

13A 가스기기 새 가스호환성 판정법 (New Method for Estimating Gas Interchangeability for 13A Gas Appliances)

  • 하영철;박세종;박원식;최경석;이창언
    • 대한기계학회논문집B
    • /
    • 제35권9호
    • /
    • pp.961-967
    • /
    • 2011
  • 본 연구에서는 13A 가스기기의 새 가스호환성 판정법을 개발하고자 하였다. 호환성 판정법 개발의 원칙은 세 가지로서, 1) 웨버지수 외에 가스조성 영향을 대표할 수 있는 인자의 도출, 2) 우리나라 가정과 업소에 보급된 모든 종류의 제작사별 가스기기(예혼합 가스기기 포함) 시험, 3) 가능한 한 간단한 판정법 개발이다. 이러한 원칙하에 30대의 대표성 있는 가스기기에 대하여 가스호환성 실험을 하였고 그 결과 웨버지수-비중 형식의 간단한 2차원 판정법(도표)을 개발하였다. 본 호환성 판정법은, 기존 호환성 판정법과 달리 화염안정 영역이 좁은 예혼합 가스기기를 포함하며, 이로 인해 기존 호환성 판정법보다 가스호환성 영역이 좁은 것으로 나타났다.

능동 데이터베이스를 이용한 직접부하제어 (Direct Load Control Using Active Database)

  • 최상열;김학만
    • 조명전기설비학회논문지
    • /
    • 제20권5호
    • /
    • pp.107-115
    • /
    • 2006
  • 본 연구에서는 우선순위기반의 동적 프로그래밍 기법을 이용하여 제안된 기존의 직접부하제어 알고리즘과 본 연구에서 제시되는 능동 데이터베이스를 연동시킨 직접부하제어시스템을 제안하였다. 능동 데이터베이스 구축을 위해, 데이터베이스의 요구 사항을 분석하여 E-R Diagram을 이용한 개념을 도입하여 데이터베이스를 설계 후 이를 시스템으로 구현하였다. 그 후 현재 부하량 또는 15분 후의 부하량이 목적 부하량을 초과하는 경우에 사용자의 개입 없이 직접부하제어가 이루어지도록 하기 위해 기존의 직접부하제어 알고리즘을 능동 규칙으로 모델링 하여 데이터베이스에 부과하였다. 그 결과, 직접부하제어 시스템의 데이터 관리에서 빈번한 부하의 ON/OFF에 따른 이들 데이터의 갱신 등이 발생할 경우 반드시 지켜져야 되는 무결성 검증과 현재 전력량 또는 15분 후의 전력량이 갑작스럽게 증가할 경우, 이를 해결하기 위해 사용자의 개입 없는 시스템이 자동적으로 대처할 수 있도록 하였다.

한반도 근해의 해류와 해수특성 -III. 한국 동해 중부 극전선역에 출현하는 수괴의 화학적 특성- (A Study on Sea Water and Ocean Current in the Sea Adjacent to Korea Peninsula -III. Chemical Characteristics of Water Masses in the Polar Front Area of the Central Korean East Sea-)

  • 양한섭;김성수;강창근;조규대
    • 한국수산과학회지
    • /
    • 제24권3호
    • /
    • pp.185-192
    • /
    • 1991
  • 동해 중부 극전선역에 있어서 동계와 하계에 각종 수괴의 수직분포특성과 이 수괴들의 화학적성 질에 대해 연구하였다. 동계의 경우, 수온약층은 북쪽 바깥 정점들이 남쪽 연안 정점들에 비해 더 깊은 수층에 존재하고, 이 약층의 상부에는 대마난류수가, 하부수층에는 동해고유수가 분포하고 있다. 그러나, 하계에는 수직적으로 대마난류 표층수, 중층수, 북한한류수 및 동해고유수가 분포하고, 동해고유수는 동계보다 다소 상부수층에 존재한다. 하계에 T-S diagram으로는 북한한류수 계통의 수괴, 대마난류 중층수 및 동해고유수의 혼합수를 구분할 수 없었으나, $T-O_2$ diagram으로는 구분이 가능했다. 한편, 동계 수온과 AOU는 좋은 역의 직선 관계를 보이며, AOU의 수직분포는 생물$\cdot$화학적과정보다는 주로 물리적 혼합과정에 의해 결정됨을 시사한다. 하계에는 대마난류 표층수에서 AOU값이 가장 낮고, 동해고유수에서 가장 높으며, 북한한류수 및 대마난류 중층수의 AOU값은 위 두수괴 사이의 값을 보인다. 그러나, 북한한류수괴의 해수는 대마난류 중층수보다 용존산소 농도가 약 1-2ml/l 높은데도, 이 두수괴의 생물$\cdot$화학적 산소요구량(AOU)은 비슷하였다. 일반외양수의 경우와 같이, 인산소은 AOU와 정의 직선관계이지만, 그 기울기 $(\Delta P/\Delta AOU)$ 값은 외양역의 $1/3\mu g-at/ml$ 보다 다소 작으며, 이는 표충수중 용존산소가 아래충으로 분자확산되어 AOU값이 낮아지기 매문이라고 생각된다. 특히, 하계 100m 이심충에서는 그 비값이 $l/2.0 \mu g-at/ml$ 으로 훨씬 낮으며, 그 이유는 비교적 낮은 AOU값을 보이는 북한한류계통의 해수가 중층(100-200m)에 나타나기 때문이다. 한편, 질산염과 인산소은 동$\cdot$ 하계 모두 전 정점에 대해 상관 계수 r=0.93 이상으로 좋은 정의 직선관계를 보인다.

  • PDF

EDI감사용 의사결정시스템의 개발

  • 이상재;한인구
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 1995년도 춘계공동학술대회논문집; 전남대학교; 28-29 Apr. 1995
    • /
    • pp.234-251
    • /
    • 1995
  • 본 연구에서는 EDI감사 의사결정지원시스템을 개발하였다. 이를 위해서 기존의 EDP감사 의사결정지원시스템 및 감사전문가시스템분야의 연구를 고찰했다. EDI감사를 위한 의사결정지원시스템은 통계, 위험, 회사의 개요, 테스트 항목등의 데이타를 저장한 데이타베이스 시스템이다. 시스템 개발을 위해서 E/R(Entity Relation)이나 DFD(Data Flow Diagram)분석을 통해서 논리적인 설계를 하였다. 시스템 개발은 개인용 데이타베이스팩키지인 FoxPro를 사용하였다. 이 시스템을 통해서 감사인이 필요한 테스트 결과를 조회하거난 저장할 수 있고 통제, 위험, 회사등의 상호조회를 통한 필요한 통제나 위험정도를 쉽게 조회해 볼수 있다. 회사마다 필요한 통제, 위험, 테스트 항목등의 체크리스트가 달라지는 경우에 이 시스템을 통해서 입력 저장하여 각각의 회사에 대해 다른 체크리스트를 저장하여 놓을수 있다. 본 시스템은 EDI감사뿐만 아니라 일반 EDP감사분야에도 적용가능할 것이다. 종이를 사용한 감사증적이 없음으로 인해 수작업에 의한 EDI감사는 어려움이 있고 EDP감사시스템분야의 국내 연구가 전무한 실정에서 EDI감사를 지원하는 시스템의 연구는 의의를 갖는다고 생각된다. 본 시스템을 통해서 EDI의 보안 및 감사업무의 효율성이 높아지고 EDI에 대한 위험에 효율적으로 대처할수 있게 될 것이다. 그리고 이러한 보안 및 감사기법과 통제모형을 지식베이스로 구축해서 실제의 위험노출상황에서 가능한 보안을 위한 통제방안이 여러가지가 있는 경우에 비용/편익 분석, 효율성, 회사방침 및 법률적인 문제등을 고려해서 최적의 보안통제 및 감사기법을 선택하는 것을 지원할 수 있을 것이다.고리듬을 개발 함으로써 내부점 선형계획법의 수행속도의 개선에 도움이 될 것이다.성요소들을 제시하였다.용자 만족도가 보다 높은 것으 로 나타났다. 할 수 있는 효율적인 distributed system를 개발하는 것을 제시하였다. 본 논문은 데이타베이스론의 입장에서 아직 정립되어 있지 않은 분산 환경하에서의 관계형 데이타베이스의 데이타관리의 분류체계를 나름대로 정립하였다는데 그 의의가 있다. 또한 이것의 응용은 현재 분산데이타베이스 구축에 있어 나타나는 기술적인 문제점들을 어느정도 보완할 수 있다는 점에서 그 중요성이 있다.ence of a small(IxEpc),hot(Tex> SOK) core which contains two tempegatlue peaks at -15" east and north of MDS. The column density of HCaN is (1-3):n1014cm-2. Column density at distant position from MD5 is larger than that in the (:entral region. We have deduced that this hot-core has a mass of 10sR1 which i:s about an order of magnitude larger those obtained by previous studies.previous studies.업순서들의 상관관계를 고려하여 보다 개선된 해를 구하기 위한 연구가 요구된다. 또한, 준비작업비용을 발생시키는 작업장의 작업순서결정에 대해서도 연구를 행하여, 보완작업비용과 준비비용을 고려한 GMMAL 작업순서문제를 해결하기 위한 연구가 수행되어야 할 것이다.로 이루어

  • PDF

유역특성에 의한 합성단위도의 유도에 관한 연구 (Derivation of the Synthetic Unit Hydrograph Based on the Watershed Characteristics)

  • 서승덕
    • 한국농공학회지
    • /
    • 제17권1호
    • /
    • pp.3642-3654
    • /
    • 1975
  • The purpose of this thesis is to derive a unit hydrograph which may be applied to the ungaged watershed area from the relations between directly measurable unitgraph properties such as peak discharge(qp), time to peak discharge (Tp), and lag time (Lg) and watershed characteristics such as river length(L) from the given station to the upstream limits of the watershed area in km, river length from station to centroid of gravity of the watershed area in km (Lca), and main stream slope in meter per km (S). Other procedure based on routing a time-area diagram through catchment storage named Instantaneous Unit Hydrograph(IUH). Dimensionless unitgraph also analysed in brief. The basic data (1969 to 1973) used in these studies are 9 recording level gages and rating curves, 41 rain gages and pluviographs, and 40 observed unitgraphs through the 9 sub watersheds in Nak Oong River basin. The results summarized in these studies are as follows; 1. Time in hour from start of rise to peak rate (Tp) generally occured at the position of 0.3Tb (time base of hydrograph) with some indication of higher values for larger watershed. The base flow is comparelatively higher than the other small watershed area. 2. Te losses from rainfall were divided into initial loss and continuing loss. Initial loss may be defined as that portion of storm rainfall which is intercepted by vegetation, held in deppression storage or infiltrated at a high rate early in the storm and continuing loss is defined as the loss which continues at a constant rate throughout the duration of the storm after the initial loss has been satisfied. Tis continuing loss approximates the nearly constant rate of infiltration (${\Phi}$-index method). The loss rate from this analysis was estimated 50 Per cent to the rainfall excess approximately during the surface runoff occured. 3. Stream slope seems approximate, as is usual, to consider the mainstreamonly, not giving any specific consideration to tributary. It is desirable to develop a single measure of slope that is representative of the who1e stream. The mean slope of channel increment in 1 meter per 200 meters and 1 meter per 1400 meters were defined at Gazang and Jindong respectively. It is considered that the slopes are low slightly in the light of other river studies. Flood concentration rate might slightly be low in the Nak Dong river basin. 4. It found that the watershed lag (Lg, hrs) could be expressed by Lg=0.253 (L.Lca)0.4171 The product L.Lca is a measure of the size and shape of the watershed. For the logarithms, the correlation coefficient for Lg was 0.97 which defined that Lg is closely related with the watershed characteristics, L and Lca. 5. Expression for basin might be expected to take form containing theslope as {{{{ { L}_{g }=0.545 {( { L. { L}_{ca } } over { SQRT {s} } ) }^{0.346 } }}}} For the logarithms, the correlation coefficient for Lg was 0.97 which defined that Lg is closely related with the basin characteristics too. It should be needed to take care of analysis which relating to the mean slopes 6. Peak discharge per unit area of unitgraph for standard duration tr, ㎥/sec/$\textrm{km}^2$, was given by qp=10-0.52-0.0184Lg with a indication of lower values for watershed contrary to the higher lag time. For the logarithms, the correlation coefficient qp was 0.998 which defined high sign ificance. The peak discharge of the unitgraph for an area could therefore be expected to take the from Qp=qp. A(㎥/sec). 7. Using the unitgraph parameter Lg, the base length of the unitgraph, in days, was adopted as {{{{ {T}_{b } =0.73+2.073( { { L}_{g } } over {24 } )}}}} with high significant correlation coefficient, 0.92. The constant of the above equation are fixed by the procedure used to separate base flow from direct runoff. 8. The width W75 of the unitgraph at discharge equal to 75 per cent of the peak discharge, in hours and the width W50 at discharge equal to 50 Per cent of the peak discharge in hours, can be estimated from {{{{ { W}_{75 }= { 1.61} over { { q}_{b } ^{1.05 } } }}}} and {{{{ { W}_{50 }= { 2.5} over { { q}_{b } ^{1.05 } } }}}} respectively. This provides supplementary guide for sketching the unitgraph. 9. Above equations define the three factors necessary to construct the unitgraph for duration tr. For the duration tR, the lag is LgR=Lg+0.2(tR-tr) and this modified lag, LgRis used in qp and Tb It the tr happens to be equal to or close to tR, further assume qpR=qp. 10. Triangular hydrograph is a dimensionless unitgraph prepared from the 40 unitgraphs. The equation is shown as {{{{ { q}_{p } = { K.A.Q} over { { T}_{p } } }}}} or {{{{ { q}_{p } = { 0.21A.Q} over { { T}_{p } } }}}} The constant 0.21 is defined to Nak Dong River basin. 11. The base length of the time-area diagram for the IUH routing is {{{{C=0.9 {( { L. { L}_{ca } } over { SQRT { s} } ) }^{1/3 } }}}}. Correlation coefficient for C was 0.983 which defined a high significance. The base length of the T-AD was set to equal the time from the midpoint of rain fall excess to the point of contraflexure. The constant K, derived in this studies is K=8.32+0.0213 {{{{ { L} over { SQRT { s} } }}}} with correlation coefficient, 0.964. 12. In the light of the results analysed in these studies, average errors in the peak discharge of the Synthetic unitgraph, Triangular unitgraph, and IUH were estimated as 2.2, 7.7 and 6.4 per cent respectively to the peak of observed average unitgraph. Each ordinate of the Synthetic unitgraph was approached closely to the observed one.

  • PDF

한국주요빙계의 소유역에 대한 순간단위권 유도에 관한 연구 (I) (Studies on the Derivation of the Instantaneous Unit Hydrograph for Small Watersheds of Main River Systems in Korea)

  • 이순혁
    • 한국농공학회지
    • /
    • 제19권1호
    • /
    • pp.4296-4311
    • /
    • 1977
  • This study was conducted to derive an Instantaneous Unit Hydrograph for the accurate and reliable unitgraph which can be used to the estimation and control of flood for the development of agricultural water resources and rational design of hydraulic structures. Eight small watersheds were selected as studying basins from Han, Geum, Nakdong, Yeongsan and Inchon River systems which may be considered as a main river systems in Korea. The area of small watersheds are within the range of 85 to 470$\textrm{km}^2$. It is to derive an accurate Instantaneous Unit Hydrograph under the condition of having a short duration of heavy rain and uniform rainfall intensity with the basic and reliable data of rainfall records, pluviographs, records of river stages and of the main river systems mentioned above. Investigation was carried out for the relations between measurable unitgraph and watershed characteristics such as watershed area, A, river length L, and centroid distance of the watershed area, Lca. Especially, this study laid emphasis on the derivation and application of Instantaneous Unit Hydrograph (IUH) by applying Nash's conceptual model and by using an electronic computer. I U H by Nash's conceptual model and I U H by flood routing which can be applied to the ungaged small watersheds were derived and compared with each other to the observed unitgraph. 1 U H for each small watersheds can be solved by using an electronic computer. The results summarized for these studies are as follows; 1. Distribution of uniform rainfall intensity appears in the analysis for the temporal rainfall pattern of selected heavy rainfall event. 2. Mean value of recession constants, Kl, is 0.931 in all watersheds observed. 3. Time to peak discharge, Tp, occurs at the position of 0.02 Tb, base length of hlrdrograph with an indication of lower value than that in larger watersheds. 4. Peak discharge, Qp, in relation to the watershed area, A, and effective rainfall, R, is found to be {{{{ { Q}_{ p} = { 0.895} over { { A}^{0.145 } } }}}} AR having high significance of correlation coefficient, 0.927, between peak discharge, Qp, and effective rainfall, R. Design chart for the peak discharge (refer to Fig. 15) with watershed area and effective rainfall was established by the author. 5. The mean slopes of main streams within the range of 1.46 meters per kilometer to 13.6 meter per kilometer. These indicate higher slopes in the small watersheds than those in larger watersheds. Lengths of main streams are within the range of 9.4 kilometer to 41.75 kilometer, which can be regarded as a short distance. It is remarkable thing that the time of flood concentration was more rapid in the small watersheds than that in the other larger watersheds. 6. Length of main stream, L, in relation to the watershed area, A, is found to be L=2.044A0.48 having a high significance of correlation coefficient, 0.968. 7. Watershed lag, Lg, in hrs in relation to the watershed area, A, and length of main stream, L, was derived as Lg=3.228 A0.904 L-1.293 with a high significance. On the other hand, It was found that watershed lag, Lg, could also be expressed as {{{{Lg=0.247 { ( { LLca} over { SQRT { S} } )}^{ 0.604} }}}} in connection with the product of main stream length and the centroid length of the basin of the watershed area, LLca which could be expressed as a measure of the shape and the size of the watershed with the slopes except watershed area, A. But the latter showed a lower correlation than that of the former in the significance test. Therefore, it can be concluded that watershed lag, Lg, is more closely related with the such watersheds characteristics as watershed area and length of main stream in the small watersheds. Empirical formula for the peak discharge per unit area, qp, ㎥/sec/$\textrm{km}^2$, was derived as qp=10-0.389-0.0424Lg with a high significance, r=0.91. This indicates that the peak discharge per unit area of the unitgraph is in inverse proportion to the watershed lag time. 8. The base length of the unitgraph, Tb, in connection with the watershed lag, Lg, was extra.essed as {{{{ { T}_{ b} =1.14+0.564( { Lg} over {24 } )}}}} which has defined with a high significance. 9. For the derivation of IUH by applying linear conceptual model, the storage constant, K, with the length of main stream, L, and slopes, S, was adopted as {{{{K=0.1197( {L } over { SQRT {S } } )}}}} with a highly significant correlation coefficient, 0.90. Gamma function argument, N, derived with such watershed characteristics as watershed area, A, river length, L, centroid distance of the basin of the watershed area, Lca, and slopes, S, was found to be N=49.2 A1.481L-2.202 Lca-1.297 S-0.112 with a high significance having the F value, 4.83, through analysis of variance. 10. According to the linear conceptual model, Formular established in relation to the time distribution, Peak discharge and time to peak discharge for instantaneous Unit Hydrograph when unit effective rainfall of unitgraph and dimension of watershed area are applied as 10mm, and $\textrm{km}^2$ respectively are as follows; Time distribution of IUH {{{{u(0, t)= { 2.78A} over {K GAMMA (N) } { e}^{-t/k } { (t.K)}^{N-1 } }}}} (㎥/sec) Peak discharge of IUH {{{{ {u(0, t) }_{max } = { 2.78A} over {K GAMMA (N) } { e}^{-(N-1) } { (N-1)}^{N-1 } }}}} (㎥/sec) Time to peak discharge of IUH tp=(N-1)K (hrs) 11. Through mathematical analysis in the recession curve of Hydrograph, It was confirmed that empirical formula of Gamma function argument, N, had connection with recession constant, Kl, peak discharge, QP, and time to peak discharge, tp, as {{{{{ K'} over { { t}_{ p} } = { 1} over {N-1 } - { ln { t} over { { t}_{p } } } over {ln { Q} over { { Q}_{p } } } }}}} where {{{{K'= { 1} over { { lnK}_{1 } } }}}} 12. Linking the two, empirical formulars for storage constant, K, and Gamma function argument, N, into closer relations with each other, derivation of unit hydrograph for the ungaged small watersheds can be established by having formulars for the time distribution and peak discharge of IUH as follows. Time distribution of IUH u(0, t)=23.2 A L-1S1/2 F(N, K, t) (㎥/sec) where {{{{F(N, K, t)= { { e}^{-t/k } { (t/K)}^{N-1 } } over { GAMMA (N) } }}}} Peak discharge of IUH) u(0, t)max=23.2 A L-1S1/2 F(N) (㎥/sec) where {{{{F(N)= { { e}^{-(N-1) } { (N-1)}^{N-1 } } over { GAMMA (N) } }}}} 13. The base length of the Time-Area Diagram for the IUH was given by {{{{C=0.778 { ( { LLca} over { SQRT { S} } )}^{0.423 } }}}} with correlation coefficient, 0.85, which has an indication of the relations to the length of main stream, L, centroid distance of the basin of the watershed area, Lca, and slopes, S. 14. Relative errors in the peak discharge of the IUH by using linear conceptual model and IUH by routing showed to be 2.5 and 16.9 percent respectively to the peak of observed unitgraph. Therefore, it confirmed that the accuracy of IUH using linear conceptual model was approaching more closely to the observed unitgraph than that of the flood routing in the small watersheds.

  • PDF