• Title/Summary/Keyword: E-M algorithm

Search Result 295, Processing Time 0.028 seconds

A Study on Parameter Estimation of the Synchronous Generator System based on the Modified PSO (PSO 기반 동기발전기 시스템 모델정수 추정에 관한 연구)

  • Choi, Hyung-Joo;Kim, In-Soo;Lee, Heung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.8-15
    • /
    • 2015
  • This paper includes a method for estimating the parameter of a synchronous generator and exciter using the modified particle swarm optimization. A solid round rotor synchronous generator and exciter have been modeled with the saturation function. They are regarded as state of being cooperative to a infinite bus. The behavior characteristic of all particles assigned to a parameter needs to be reflected in the PSO algorithm to fine out more close result to the optimal solution. The results of the simulation to estimate the parameters of the synchronous generator and exciter in the modified PSO algorithm are described.

Study on an algorithm for atmospheric correction of Landsat TM imagery using MODTRAN simulation

  • Oh, Sung-Nam;Yu, Sung-Yeol;Lee, Hyun-Kyung;Kim, Yong-Sup;Park, Kyung-Won
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.103-109
    • /
    • 1998
  • A technique on atmospheric correction algorithm for a single band (0.76-0.90 $\mu$m) reflective of Landsat TM imagery has been developed using a radiation transfer model simulation. It proceeds in two steps: First, calculation of the surface reflectance of each pixel based on precomputed planetary albedo functions for actual atmospheres(e. g. radiosonde) and two kinds of atmospheric visibility states. Second, approximate correction of the adjacency pixel effect by taking into account the average reflectance in an 7 $\times$ 7 pixel neighbourhood and using appropriate land cover classification in reflectance. The correction functions are provided by MODTRAN model.

  • PDF

A Parallel Computation of Finite Element Analysis on a Transputer System (트랜스퓨터를 이용한 유안영속해석의 병렬계산)

  • Kim, Keun-Hwan;Choi, Kyung;Jung, Hyun-Kyo;Lee, Ki-Sik;Hahn, Song-Yop
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.7
    • /
    • pp.735-741
    • /
    • 1992
  • This paper presents a parallel algorithm for the finite element analysis using relatively inexpensive transputer parallel system. The substructure method, which is highly parallel in nature, is used to improve the parallel computing efficiency by splitting up the whole structure into substructures. The proposed algorithm is applied to a simple two-dimensional magnetostatic problem. It is found that the more the number of transputer is increased, the more the total computation time is reduced. And the computational efficiency becomes better as the number of internal boundary nodes becomes smaller.

  • PDF

Analysis of Temperture Distribution in 2-D Power Transformer Using Hybrid Mesh Model (복합격자 생성기법을 이용한 전력용 변압기의 2차원 온도분포 해석)

  • Min, Kyung-Jo;Kim, Joong-Kyoung;Hahn, Sung-Chin;Joo, Soo-Won
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.993-995
    • /
    • 2005
  • Recently, the efficiency of power transformer is improved as well as the size is becoming smaller. So, it is very important that temperature characteristics of the transformer should be estimated and predicted precisely. This paper deals with the temperature distribution of power transformer by simplified 2-D hybrid mesh model. The temperature distribution of model transformer was obtained by CFD algorithm considering natural convection. Heat sources are calculated first by magnetic field analysis based on F.E.M. and are usedas the input data for thermal field problem based on computational fluid dynamics(CFD) algorithm. The calculated temperature distribution of the simplified 2-D power transformer model shows good results in accuracy as well as in computing time.

  • PDF

Comparing U-Net convolutional network with mask R-CNN in Nuclei Segmentation

  • Zanaty, E.A.;Abdel-Aty, Mahmoud M.;ali, Khalid abdel-wahab
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.3
    • /
    • pp.273-275
    • /
    • 2022
  • Deep Learning is used nowadays in Nuclei segmentation. While recent developments in theory and open-source software have made these tools easier to implement, expert knowledge is still required to choose the exemplary model architecture and training setup. We compare two popular segmentation frameworks, U-Net and Mask-RCNN, in the nuclei segmentation task and find that they have different strengths and failures. we compared both models aiming for the best nuclei segmentation performance. Experimental Results of Nuclei Medical Images Segmentation using U-NET algorithm Outperform Mask R-CNN Algorithm.

Design of Asynchronous 16-Bit Divider Using NST Algorithm (NST알고리즘을 이용한 비동기식 16비트 제산기 설계)

  • 이우석;박석재;최호용
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.3
    • /
    • pp.33-42
    • /
    • 2003
  • This paper describes an efficient design of an asynchronous 16-bit divider using the NST (new Svoboda-Tung) algorithm. The divider is designed to reduce power consumption by using the asynchronous design scheme in which the division operation is performed only when it is requested. The divider consists of three blocks, i.e. pre-scale block, iteration step block, and on-the-fly converter block using asynchronous pipeline structure. The pre-scale block is designed using a new subtracter to have small area and high performance. The iteration step block consists of an asynchronous ring structure with 4 division steps for area reduction. In other to reduce hardware overhead, the part related to critical path is designed by a dual-rail circuit, and the other part is done by a single-rail circuit in the ring structure. The on-the-fly converter block is designed for high performance using the on-the-fly algorithm that enables parallel operation with iteration step block. The design results with 0.6${\mu}{\textrm}{m}$ CMOS process show that the divider consists of 12,956 transistors with 1,480 $\times$1,200${\mu}{\textrm}{m}$$^2$area and average-case delay is 41.7㎱.

Exact Algorithm for the Weapon Target Assignment and Fire Scheduling Problem (표적 할당 및 사격순서결정문제를 위한 최적해 알고리즘 연구)

  • Cha, Young-Ho;Jeong, BongJoo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.1
    • /
    • pp.143-150
    • /
    • 2019
  • We focus on the weapon target assignment and fire scheduling problem (WTAFSP) with the objective of minimizing the makespan, i.e., the latest completion time of a given set of firing operations. In this study, we assume that there are m available weapons to fire at n targets (> m). The artillery attack operation consists of two steps of sequential procedure : assignment of weapons to the targets; and scheduling firing operations against the targets that are assigned to each weapon. This problem is a combination of weapon target assignment problem (WTAP) and fire scheduling problem (FSP). To solve this problem, we define the problem with a mixed integer programming model. Then, we develop exact algorithms based on a dynamic programming technique. Also, we suggest how to find lower bounds and upper bounds to a given problem. To evaluate the performance of developed exact algorithms, computational experiments are performed on randomly generated problems. From the results, we can see suggested exact algorithm solves problems of a medium size within a reasonable amount of computation time. Also, the results show that the computation time required for suggested exact algorithm can be seen to increase rapidly as the problem size grows. We report the result with analysis and give directions for future research for this study. This study is meaningful in that it suggests an exact algorithm for a more realistic problem than existing researches. Also, this study can provide a basis for developing algorithms that can solve larger size problems.

A Study on the Optimum Design Using FEM and ADS (FEM과 ADS를 이용한 최적설계에 관한 연구)

  • Kim, M.J.;Lee, S.S.;Park, J.H.;Kim, S.M.;Jeon, E.C.
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.146-151
    • /
    • 2001
  • This study is an investigation for the ADS optimum design by using FEM. We write out program which express ADS perfectly and reduce the required time for correcting of model to the minimum in solution and manufacture result. We complete algorithm which can plan optimum forming of model by feedback error information in CAE. For that, we draw up ADS program which modeling rachet wheel by using visual LISP and telegraph to ANSYS, structural solution program, we can solve stress solution. Then we correct model by feedback date obtaining in solution process, repeat course following stress solution again and do modeling rachet wheel for optimum forming. That is our aim. As a result of experience, we can develope automatic design program using Visual LISP and exhibit ADS as modeling third dimension CAD for optimum design. Also, we develop optimum design algorithm using ADS and FEM. In rachet wheel, greatest equivalence stress originates in key groove comer and KS standard is proved the design for security.

  • PDF

Seismic Response Control of Building Structures using Semiactive Smart Dampers (준능동 스마트 감쇠기를 사용한 빌딩구조물의 지진응답제어)

  • Kim Hyun-Su;Raschke Paul N.;Lee Dang-Guen
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.451-458
    • /
    • 2006
  • The goal of many researchers in the field of structural engineering is to reduce both damage to building structures and discomfort of their inhabitants during strong motion seismic events. The present paper reports on analytical work conducted with this aim in mind as a prior research of experimental study. A four-story, 6.4 m tall, laboratory model of a building is employed as a example structure. The laboratory structure has graphite epoxy columns and each floor is equipped with a chevron brace that serves to resist inter-story drift with the installation of a magnetorheological (MR) damper. An artificial excitation has been generated with a robust range of seismic characteristics. A series of numerical simulations demonstrates that an optimized fuzzy controller is capable of robust performance for a variety of seismic base motions. Optimization of the fuzzy controller is achieved using multi-objective genetic algorithm(MOGA), i.e. NSGA-II. Multiple objective functions are used in order to reduce both peak and root-means-squared displacement and accelerations at the floor levels of the building.

  • PDF

Dual Sliding Statistics Switching Median Filter for the Removal of Low Level Random-Valued Impulse Noise

  • Suid, Mohd Helmi;Jusof, M F.M.;Ahmad, Mohd Ashraf
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1383-1391
    • /
    • 2018
  • A new nonlinear filtering algorithm for effectively denoising images corrupted by the random-valued impulse noise, called dual sliding statistics switching median (DSSSM) filter is presented in this paper. The proposed DSSSM filter is made up of two subunits; i.e. Impulse noise detection and noise filtering. Initially, the impulse noise detection stage of DSSSM algorithm begins by processing the statistics of a localized detection window in sorted order and non-sorted order, simultaneously. Next, the median of absolute difference (MAD) obtained from both sorted statistics and non-sorted statistics will be further processed in order to classify any possible noise pixels. Subsequently, the filtering stage will replace the detected noise pixels with the estimated median value of the surrounding pixels. In addition, fuzzy based local information is used in the filtering stage to help the filter preserves the edges and details. Extensive simulations results conducted on gray scale images indicate that the DSSSM filter performs significantly better than a number of well-known impulse noise filters existing in literature in terms of noise suppression and detail preservation; with as much as 30% impulse noise corruption rate. Finally, this DSSSM filter is algorithmically simple and suitable to be implemented for electronic imaging products.