• Title/Summary/Keyword: E glass Fiber/Epoxy Composites

Search Result 23, Processing Time 0.026 seconds

Degradation Characteristics of Filament-Winding-Laminated Composites Under Accelerated Environmental Test (필라멘트 와인딩 복합적층재의 환경가속 노화시험 평가)

  • Kim, Duck-Jae;Yun, Young-Ju;Choi, Nak-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.3 s.258
    • /
    • pp.295-303
    • /
    • 2007
  • Degradation behaviors of filament-winded composites have been evaluated under the accelerated environmental test of high temperature, water immersion and thermal impact conditions. Two kinds of laminated composites coated by an urethane resin have been used: carbon-fiber reinforced epoxy(T700/Epon-826, CFRP) and glass-fiber reinforced phenolic (E-glass/phenolic, GFRP). For tensile strength of $0^{\circ}$ composites, CFRP showed little degradation while GFRP did high reduction by 25% under the influence of high temperature and water However for water-immersed $90^{\circ}$ composites tensile strength of both CFRP and GFRP showed high reduction. Bending strength and modulus of $90^{\circ}$ composites were largely reduced in water-immersion as well as high temperature environment. Urethane coating on the composite surface improved the bending properties by 20%, however hardly showed such improvement for water-immersed $90^{\circ}$ composites. In case of shear strength and modulus, both CFRP and GFRP showed high reduction by water-Immersion test but did a slight increase by high temperature and thermal impact conditions.

Comparison of the Stress Concentration Factors for GFRP Plate having Centered Circular Hole by Three Resource-Conserving Methods

  • Gao, Zhongchen;Park, Soo-Jeong;Kim, Yun-Hae
    • Composites Research
    • /
    • v.29 no.6
    • /
    • pp.388-394
    • /
    • 2016
  • Fiber reinforced plastic (FRP) composites have drawn increasing attentions worldwide for decades due to its outstanding properties. Stress concentration factor (SCF) as an essential parameter in materials science are critically considered in structure design and application, strength assessment and failure prediction. However, investigation of stress concentration in FRP composites has been rarely reported so far. In this study, three resource-conserving analyses (Isotropic analysis, Orthotropic analysis and Finite element analysis) were introduced to plot the $K_T^A-d/W$ curve for E-glass/epoxy composite plate with the geometrical defect of circular hole placed centrally. The plates were loaded to uniaxial direction for simplification. Finite element analysis (FEA) was carried out via ACP (ANSYS composite prepost module). Based on the least squares method, a simple expression of fitting equation could be given based on the simulated results of a set of discrete points. Finally, all three achievable solutions were presented graphically for explicit comparison. In addition, the investigation into customized efficient SCFs has also been carried out for further reference.

Study on Fatigue Damage Model and Multi-Stress Level Fatigue Life Prediction of Composite Materials (II) -Fatigue Damage Model using Reference Modulus- (복합재료의 피로손상 모형 및 다응력 수위 피로수명 예측 연구 (II) - 참고계수를 이용한 피로 손상 모형 -)

  • 이창수;황운봉;한경섭
    • Composites Research
    • /
    • v.12 no.2
    • /
    • pp.62-69
    • /
    • 1999
  • During fatigue loading of composite materials, damage accumulation can be monitored by measuring their material properties. In this study, fatigue modulus is used as the damage index. Fatigue life of composite materials may be predicted analytically using damage models which are based on fatigue modulus and resultant strain. Damage models are propesed as funtions of applied stress level, number of fatigue cycle and fatigue life. The predicted life was comparable to the experimental result obtained using E-glass fiber reinforced epoxy resin materials and pultruded glass fiber reinforce polyester composites under two-stress level fatigue loading.

  • PDF

Optimum Combination of Carbon and Glass Fiber Composite to Obtain the Hybrid Effect (하이브리드 효과를 주는 탄소섬유와 유리섬유의 최적 조합비)

  • Song, Hyung-Soo;Min, Chang-Shik
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.4
    • /
    • pp.405-411
    • /
    • 2011
  • Using combinations of carbon and glass fiber composites normally used for strengthening of concrete structures, the hybrid effect from strengthening concrete structures using the composite is studied. To produce the hybrid effects, the specimens were made with optimum proportions of carbon fibers with glass fibers. Then, direct tensile tests were conducted on the hybrid FRP (fiber reinforced polymer) specimens. Unlike the woven fiber sheet currently used in construction sites, the FRP specimens have to be directly combined with the fibers, which make the work very complicated. Therefore, direct tensile test specimens manufacturing method based on the combination of high-tension carbon fibers and E-type glass fibers was proposed and the effects of hybridization is studied through the direct tensile test. By comparing the ductility index, the modulus of elasticity, and the stress-strain curves of the specimens, the most optimum glass to carbon fiber combination ratio for the hybrid FRP was found to be 9 to 1 with ductile K-type epoxy. The study results are discussed in detail in the paper.

Analysis of the machinability of GFRE composites in drilling processes

  • Khashaba, Usama. A.;Abd-Elwahed, Mohamed S.;Ahmed, Khaled I.;Najjar, Ismail;Melaibari, Ammar;Eltaher, Mohamed A
    • Steel and Composite Structures
    • /
    • v.36 no.4
    • /
    • pp.417-426
    • /
    • 2020
  • Drilling processes in fiber-reinforced polymer composites are essential for the assembly and fabrication of composite structural parts. The economic impact of rejecting the drilled part is significant considering the associated loss when it reaches the assembly stage. Therefore, this article tends to illustrate the effect of cutting conditions (feed and speed), and laminate thickness on thrust force, torque, and delamination in drilling woven E-glass fiber reinforced epoxy (GFRE) composites. Four feeds (0.025, 0.05, 0.1, and 0.2 mm/r) and three speeds (400, 800, and 1600 RPM) are exploited to drill square specimens of 36.6×36.6 mm, by using CNC machine model "Deckel Maho DMG DMC 1035 V, ecoline". The composite laminates with thicknesses of 2.6 mm, 5.3 mm, and 7.7 mm are constructed respectively from 8, 16, and 24 glass fiber layers with a fiber volume fraction of about 40%. The drilled specimen is scanned using a high-resolution flatbed color scanner, then, the image is analyzed using CorelDraw software to evaluate the delamination factor. Multi-variable regression analysis is performed to present the significant coefficients and contribution of each variable on the thrust force and delamination. Results illustrate that the drilling parameters and laminate thickness have significant effects on thrust force, torque, and delamination factor.

Comparison of Interfacial Aspects of Carbon and Glass Fibers/Epoxy Composites by Microdroplet Tests at Low and Room Temperatures (상온 및 저온에서의 탄소와 유리섬유/에폭시 복합재료의 계면특성 비교)

  • Wang, Zuo-Jia;GnidaKouong, Joel;Kim, Myung-Soo;Park, Joung-Man;Um, Moon-Kwang
    • Journal of Adhesion and Interface
    • /
    • v.10 no.4
    • /
    • pp.162-168
    • /
    • 2009
  • As a preliminary study of optimum composite properties under cryogenic temperature, the comparison of interfacial properties of carbon or glass fibers reinforced epoxy composites was evaluated at ambient and intermediate low temperature, i.e., 25 and $-10^{\circ}C$ by using micromechanical techniques. Under tensile and compressive loading conditions, their mechanical modulus at low temperature was higher than that atambient temperature. Interfacial shear strength (IFSS) at ambient and low temperatures was compared to each other, depending on epoxy matrix toughness and apparent modulus at the interface. The IFSS was much higher at low temperature than that at room temperature because of the increased epoxy matrix modulus. Statistical distributions of tensile strengths of glass and carbon fibers were evaluated for different temperature ranges, which is dependent upon fiber's inherent flaws and rigidity.

  • PDF

A Study on the Characteristics of Surface Degradation & Degradation-Mechanism in UV Treated FRP (자외선 파장에 따른 FRP의 표면 열화특성 및 열화메커니즘에 관한 연구)

  • Lee, B.S.;Lim, K.B.;Na, D.G.;Chung, M.Y.;Chung, E.N.;You, D.H.;Lee, D.C.
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.813-815
    • /
    • 1998
  • In order to analyse the degradation process of epoxy/glass fiber for outdoor condition, FRP laminate was exposed to the wavelength of ultraviolet rays and evaluated by comparing contact angle, surface resistivity, surface potential decay, and ESCA spectrum respectively. Finally, We can conclude that the degradation phenomena on the surface of epoxy composites are dominated by the induction of ester and carboxyl groups.

  • PDF

Tensile Failure Characterization of Composites for Railway Vehicle (철도차량 복합소재의 인장파괴 특성분석)

  • Kim, Jeong-Guk;Kwon, Sung-Tae;Kim, Jung-Seok;Yoon, Hyuk-Jin
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1231-1235
    • /
    • 2010
  • The tensile failure behavior of polymer matrix composite materials was investigated with the aid of a nondestructive evaluation (NDE) technique. The materials, E-glass fiber reinforced epoxy matrix composites, which are applicable to carbody materials in railway vehicles to reduce weight, were used for this investigation. In order to explain stress-strain behavior of polymer matrix composite sample, the infrared thermography technique was employed. A high-speed infrared (IR) camera was used for in-situ monitoring of progressive damages of polymer matrix composite samples during tensile testing. In this investigation, the IR thermography technique was used to facilitate a better understanding of damage evolution, fracture mechanism, and failure mode of polymer matrix composite materials during monotonic loadings.

  • PDF

Vibration of axially moving 3-phase CNTFPC plate resting on orthotropic foundation

  • Arani, Ali Ghorbanpour;Haghparast, Elham;Zarei, Hassan Baba Akbar
    • Structural Engineering and Mechanics
    • /
    • v.57 no.1
    • /
    • pp.105-126
    • /
    • 2016
  • In the present study, modelling and vibration control of axially moving laminated Carbon nanotubes/fiber/polymer composite (CNTFPC) plate under initial tension are investigated. Orthotropic visco-Pasternak foundation is developed to consider the influences of orthotropy angle, damping coefficient, normal and shear modulus. The governing equations of the laminated CNTFPC plates are derived based on new form of first-order shear deformation plate theory (FSDT) which is simpler than the conventional one due to reducing the number of unknowns and governing equations, and significantly, it does not require a shear correction factor. Halpin-Tsai model is utilized to evaluate the material properties of two-phase composite consist of uniformly distributed and randomly oriented CNTs through the epoxy resin matrix. Afterwards, the structural properties of CNT reinforced polymer matrix which is assumed as a new matrix and then reinforced with E-Glass fiber are calculated by fiber micromechanics approach. Employing Hamilton's principle, the equations of motion are obtained and solved by Hybrid analytical numerical method. Results indicate that the critical speed of moving laminated CNTFPC plate can be improved by adding appropriate values of CNTs. These findings can be used in design and manufacturing of marine vessels and aircrafts.

Electrodeposition onto the Surface of Carbon Fiber and its Application to Composites(I) - Electrodeposition of MVEMA and EMA (탄소섬유 표면에의 고분자 전착과 복합재료 물성(I) - MVEMA와 EMA의 전착 -)

  • Kim, Minyoung;Kim, Jihong;Kim, Wonho;Kim, Booung;Hwang, Byungsun;Choi, Youngsun
    • Applied Chemistry for Engineering
    • /
    • v.9 no.6
    • /
    • pp.894-900
    • /
    • 1998
  • An interphase between carbon fiber and epoxy matrix was introduced to increase impact strength of carbon fiber reinforced composites (CFRC) without sacrificing the interlaminar shear strength. Flexible polymers, I. e., MVEMA (poly(methyl vinyl ether-co-maleic anhydride)) and EMA(poly(ethylene-co-maleic anhydride)), which have reactive functional groups were considered as interphase materials. Weight hain of MVEMA and EMA onto the surface of carbon fibers was evaluated by changing the parameters of electrodeposition process. Electrodeposition mechanism of polymers which have anhydride functional group was identified by IR spectroscopy, that is, the generation of $RCOO^-$ functional group by the attack of hydroxide anion in the basic solution was observed. The weight gain was increased by increasing concentration of polymers, current density, and electrodeposition time. However the excess generation of oxygen gas decreased the weight gain by removing the deposited polymers. Washing in the running water easily removed the deposited polymers which are on the fiber surface without bonding, as a results, only 0.5 wt% of deposited polymers are remained.

  • PDF