• Title/Summary/Keyword: E coli O157 : nonH7

Search Result 42, Processing Time 0.033 seconds

Effect of Temperature on Survival of Escherichia coli O157:H7 and Listeria monocytogenes in Livestock Manure Compost

  • Jung, Kyu-Seok;Heu, Sung-Gi;Roh, Eun-Jung;Kim, Min-Ha;Gil, Hyun-Ji;Choi, Na-Young;Lee, Dong-Hwan;Lim, Jeong-A;Ryu, Jae-Gee;Kim, Kye-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.6
    • /
    • pp.647-651
    • /
    • 2013
  • Animal manure compost is a commonly used fertilizer in organic vegetable and fruit production in Korea. However, livestock manure compost produced from animal feces can contain a lot of the non-pathogenic and pathogenic bacteria. Of particular concern are bacteria causing human food-borne illness such as Escherichia coli O157:H7 and Listeria monocytogenes. The objective of this study was to investigate effect of temperature on survival of E. coli O157:H7 and L. monocytogenes in livestock manure compost. Commercial livestock manure compost (manure 60%, sawdust 40%) was inoculated with E. coli O157:H7 and L. monocytogenes. Compost was incubated at four different temperatures (10, 25, 35, and $55^{\circ}C$) for 20 weeks. Samples were taken every week during incubation depending on the given conditions. E. coli O157:H7 persisted for up to 1 day in livestock manure compost at $55^{\circ}C$, over 140 days at $10^{\circ}C$, 140 days at $25^{\circ}C$, and 120 days at $35^{\circ}C$, respectively. L. monocytogenes persisted for up to 1 day in livestock manure compost at $55^{\circ}C$ and 140 days at $10^{\circ}C$, 70 days at $25^{\circ}C$, and 40 days at $35^{\circ}C$, respectively. The results indicated that E. coli O157:H7 and L. monocytogenes persisted longer under low temperature condition. E. coli O157:H7 survived longer than L. monocytogenes at three different temperatures (10, 25, and $35^{\circ}C$). The results are being used to develop guidelines on the management of manure to reduce the risks of E. coli O157:H7 and L. monocytogenes transmission to foods produced in the presence of animal waste.

Acid Resistance of Non-O157 Shiga Toxin-Producing Escherichia coli Adapted in Fruit Juices in Simulated Gastric Fluid (위합성용액에서 과일주스에 노출한 Non-O157 Shiga Toxin-Producing Escherichia coli의 산 저항성 평가)

  • Kim, Gwang-Hee;Oh, Deog-Hwan
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.4
    • /
    • pp.577-584
    • /
    • 2016
  • The objectives of this study were I) to compare the acid resistance (AR) of seven non-O157 Shiga toxin-producing Escherichia coli (STEC) serogroups, including O26, O45, O103, O111, O121, O145, and O157:H7 STEC isolated from various sources, in 400 mM acetic acid solution (AAS) at pH 3.2 and $30^{\circ}C$ for 25 min with or without glutamic acid and II) to determine strain survival upon exposure to simulated gastric fluid (SGF, pH 1.5) at $37^{\circ}C$ for 2 h after acid adaptation in apple, pineapple, orange, and strawberry juices at pH 3.8, $4^{\circ}C$ and $20^{\circ}C$. Results show that the O111 serogroup strains had the strongest AR (0.12 log reduction CFU/mL) which was very similar to that of O157:H7 STEC (P>0.05), compared to other serogroups in AAS without glutamic acid, whereas O26 serogroup strains showed the most sensitive AR. However, there was no significant (P>0.05) difference of AR among seven serogroups in AAS with glutamic acid. In the SGF study, 05-6545 (O45:H2), 08023 (O121:H19), and 03-4669 (O145:NM) strains adapted in fruit juices at $4^{\circ}C$ and $20^{\circ}C$ displayed enhanced survival with exposure to SGF for 60 min compared to 06E0218 (O157:H7) strains (P<0.05). In addition, 4 STEC strains adapted in pineapple juice at $4^{\circ}C$ showed enhanced survival with exposure to SGF for 60 min compared to those strains acid-adapted in the other fruit juices. Generally, adaptation at $4^{\circ}C$ in fruit juices resulted in significantly enhanced survival levels compared to acid-adapted at $20^{\circ}C$ and non-adapted conditions. The AR caused by adaptation in fruit juices at low temperature may thus increase survival of non-O157 STEC strain in acidic environments such as the gastrointestinal tract. These results suggest that more careful strategies should be provided to protect against risk of foodborne illness by non-O157 STEC.

Comparative study of Clostridium perfringens, Salmonella spp. and E. coli focused on characteristics of E. coli O157 isolated from pigs of HACCP- and non-HACCP-accredited swine farms in Korea

  • Keum, Hyun Ok;Kim, Hye Kwon;Rho, Se Mi;Moon, Hyoung Joon;Park, Seong Jun;Park, Bong Kyun
    • Korean Journal of Veterinary Research
    • /
    • v.50 no.2
    • /
    • pp.113-116
    • /
    • 2010
  • To determine the prevalence of Escherichia (E.) coli O157 : H7 from pigs after the Hazard Analysis and Critical Control Point (HACCP) system has been applied to Korean swine farm since 2006, 291 fecal samples were tested between May and December in 2008. Four E. coli O157:non-H7 (1.4%) were isolated from 4 different non-HACCP-accredited farms and they didn't have virulent genes which can cause illness for human. Also, Clostridium (C.) perfringens, Salmonella spp. and E. coli enterotoxins were tested using multiplex PCR. The positive rate for these pathogens of non-HACCP-accredited farms was higher than that of HACCP-accredited farms, and especially in case of C. perfringens, E. coli enterotoxins LT and STa, it was statistically significant (p < 0.05). Thus, the early implementation of the HACCP program is expected to greatly contribute to the safety of livestock products as well as food hygiene.

Optimization of Fabrication Conditions for Immunosensor Strip to Detect Escherichia coli O157 : H7 (Escherichia coli O157 : H7 탐지용 면역센서스트립 제작 조건 최적화)

  • Park, So-Jung;Kim, Young-Kee
    • KSBB Journal
    • /
    • v.24 no.3
    • /
    • pp.253-258
    • /
    • 2009
  • In this study, the optimization of fabrication conditions was accomplished to make immuno-strip biosensor by the combination of enzyme linked immunosorbent assay (ELISA) and immuno-chromatographic strip techniques for the detection of Escherichia coli O157 : H7. Optimal fabrication conditions of capture antibody concentration, detection antibody concentration, and additive composition of running buffer solution were determined. Optimal concentration was determined as 1.0 mg/mL for both of capture antibody and detection antibody. A composition of 0.5% Tween20 and 3% BSA were selected as optimal additive for buffer solution to prevent non-specific binding.

Comparison of Methods for Detection of Escherichia coli O157:H7 in Ground Beef and Radish Sprouts

  • Lee, Jae-Hoon;Hyeon, Ji-Yeon;Heo, Seok;Hwang, In-Gyun;Kwak, Hyo-Sun;Choi, In-Soo;Park, Chan-Kyu;Seo, Kun-Ho
    • Food Science of Animal Resources
    • /
    • v.30 no.2
    • /
    • pp.179-184
    • /
    • 2010
  • Escherichia coli O157:H7 is a food-borne pathogen that causes bloody diarrhea, hemorrhagic colitis, and hemolytic uremic syndrome (HUS). We compared three selective media and evaluated the performance of immunomagnetic separation (IMS) for the detection of low levels of E. coli O157:H7 in ground beef and radish sprouts with different levels of background flora. Bulk food samples (500 g for each trial) were artificially inoculated with nalidixic acid-resistant E. coli O157:H7 at the lowest dose that would generate 20 partial-positive samples of 25 g each. All samples were homogenized in mTSB (225 mL) and incubated overnight at $37^{\circ}C$. IMS was performed using the enriched mTSB samples (1 mL) along with conventional spreads plated onto three different selective media: Sorbitol MacConkey agar (SMAC), Sorbitol MacConkey agar with cefixime and tellulite (CT-SMAC), and Sorbitol MacConkey agar with nalidixic acid (NAL-SMAC) as the gold standard. Two suspicious colonies from each medium were selected and confirmed usinga serological test after transfer to tryptic soy broth with yeast extract (TSAYE). CT-SMAC was better than SMAC for detecting E. coli O157:H7 in all food types. Although there was no statistical difference in the number of positive samples when using IMS vs. non-IMS techniques, more positive samples were detected when IMS was used in both ground beef and radish sprouts. It appears that the improvement was more significant in radish sprouts, which had a higher level of background flora than ground beef. The results also suggest that the combination of CT-SMAC and IMS is sufficient to recover low levels of E. coli O157:H7 in high background flora food samples.

Effects of Combined Treatment of Clove Bud Essential Oil and Mild Heat on Inactivation of Escherichia coli O157:H7 Inoculated onto Red Oak Leaves (Clove Bud Essential Oil과 Mild Heat 병합처리에 의한 Red Oak Leaf에 접종된 Escherichia coli O157:H7 제어 효과)

  • Park, Su-Jong;Park, Jun-Beom;Kang, Ji-Hoon;Song, Kyung Bin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.10
    • /
    • pp.1265-1269
    • /
    • 2017
  • This study was performed to evaluate the effects of combined treatment of clove bud essential oil (CBEO) and mild heat (MH) on inactivation of Escherichia coli O157:H7 inoculated onto red oak leaves. Combined treatment of 0.2% CBEO with MH at $50^{\circ}C$ exhibited the highest inhibitory effect against E. coli O157:H7 among treatments, resulting in 1.45 log reduction compared with water washing treatment. In addition, inhibitory effect of the combined treatment was maintained during storage of red oak leaves at $4^{\circ}C$ for 9 days, showing 1.67~2.25 log reductions compared with non-treated samples. Thus, these results indicate that combined treatment with CBEO/MH can be used to ensure the microbiological safety of fresh leaf vegetables such as red oak leaves during storage.

Antimicrobial Substance against Escherichia coli O157:H7 Produced by Lactobacillus amylovorus ME1

  • Jung, Byung-Moon;Woo, Suk-Gyu;Chung, Kun-Sub
    • Food Science and Biotechnology
    • /
    • v.17 no.3
    • /
    • pp.679-682
    • /
    • 2008
  • A lactic acid bacterium producing an antimicrobial substance against Escherichia coli O157:H7 was isolated from raw milk and identified as Lactobacillus amylovorus ME-1. In addition to E. coli O157 :H7, the antimicrobial substance also inhibited the growth of Bacillus cereus, Listeria monocytogenes, Pseudomonas aeruginosa, Salmonella typhimurium, Staphylococcus aureus, Streptococcus agalactiae, Streptococcus pyrogenes, and Yersinia enterocolitica. The antimicrobial substance was stable at pH 2-12 and $121^{\circ}C$ for 15 min and insensitive to proteinase K, protease, amylase, and catalase. Purification of the antimicrobial substance was conducted through methanol and acetonitrile/ethylacetate extraction, ultrafiltration with a 500 Da cutoff, thin layer chromatography (TLC) with silicagel 60, and high performance liquid chromatography (HPLC) with a $C_{18}$ reverse phase column. The ${\lambda}_{max}$ of the purified antimicrobial substance was determined as 192 nm by ultra violet (UV) scanning, while the molecular weight was estimated as 453 Da based on the mass spectrum. Accordingly, the current results suggest that the antimicrobial substance from the L. amylovorus ME-1 was not a bacteriocin, but rather a new non-proteinaceous substance distinct from acidophilin, acidolin, diacetyl, and reuterin.

Isolation of bacteriophages having depolymerase and control of pathogenic E. coli O103 in biofilm on lettuce

  • Park, Dasom;Park, Jong-Hyun
    • Korean Journal of Food Science and Technology
    • /
    • v.51 no.6
    • /
    • pp.604-609
    • /
    • 2019
  • To control pathogenic E. coli in biofilm, bacteriophages were isolated from environmental samples. Seventeen isolates had depolymerase activities by translucent zones at the rims of plaques. To determine biofilm-forming ability, an abiotic plastic surface of polystyrene was used; E. coli O103 showed the highest biofilm formation at 30℃ after 24 h. Moreover, biofilm by E. coli O103 on the biotic surface of lettuce was observed by a scanning electron microscope. The bacteriophage cocktail of ΦNOECP40 and ΦNOECP44 showing depolymerase activities was prepared to eliminate the E. coli inbiofilm. By organic acids, reduction of E. coli in biofilm was insignificant and almost undetectable. However, the abundance of E. coli in biofilm was reduced by 3 log CFU/mL from 7.3 log CFU/mL after 60 min with the bacteriophage cocktail. Therefore, we suggest that bacteriophages with depolymerase could be utilized to effectively control pathogenic E. coli in biofilm.

Nano-scale Probe Fabrication Using Self-assembly Technique and Application to Detection of Escherichia coli O157:H7

  • Oh, Byung-Keun;Lee, Woochang;Lee, Won-Hong;Park, Jeong-Woo
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.4
    • /
    • pp.227-232
    • /
    • 2003
  • A self-assembled monolayer of protein G was fabricated to develop an immunosensor based on surface plasmon resonance (SPR), thereby improving the performance of the antibodybased biosensor through immobilizing the antibody molecules (lgG). As such, 11-mercaptoundecanoic acid (11-MUA) was adsorbed on a gold (Au) support, while the non-reactive hydrophilic surface was changed through substituting the carboxylic acid group (-COOH) in the 11-MUA molecule using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrocholide (EDAC). The formation of the self-assembled protein G layer on the Au substrate and binding of the antibody and antigen were investigated using SPR spectroscopy, while the surface topographies of the fabricated thin films were analyzed using atomic force microscopy (AFM). A fabricated monoclonal antibody (Mab) layer was applied for detecting E. coli O157:H7. As a result, a linear relationship was achieved between the pathogen concentration and the SPR angle shift, plus the detection limit was enhanced up to 10$^2$ CFU/mL.

Microbial Inactivation in Kimchi Saline Water Using Microwave Plasma Sterilization System (Microwave Plasma Sterilization System을 이용한 배추 절임수의 미생물 저감화)

  • Yu, Dong-Jin;Shin, Yoon-Ji;Kim, Hyun-Jin;Song, Hyeon-Jeong;Lee, Ji-Hye;Jang, Sung-Ae;Jeon, So-Jung;Hong, Soon-Taek;Kim, Sung-Jae;Song, Kyung-Bin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.1
    • /
    • pp.123-127
    • /
    • 2011
  • This study was conducted to decrease the microbial hazard in kimchi saline water with microwave plasma sterilization system and to evaluate the inactivation of foodborne pathogens by the microwave plasma sterilization system as a non-thermal treatment. Contamination of coliform, Escherichia coli, and yeasts and molds were detected in the used saline water, and the microbial populations increased as the saline water was reused repeatedly. The $D_{10}$-values of E. coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes by the microwave plasma sterilization system were 0.48, 0.52, and 0.45 cycle, respectively. In addition, the microbial populations of coliform, E. coli, Salmonella spp., total aerobic bacteria, and yeasts and molds in the used kimchi saline water were significantly decreased by treating the saline water using the microwave plasma sterilization system. Therefore, these results suggest that microwave plasma sterilization system can be useful in improving the microbial safety of the used saline water.