• Title/Summary/Keyword: Dynamics of Structural System

Search Result 415, Processing Time 0.028 seconds

Development of an Automation Library in Multi-Body Dynamics Program for Dynamic Structural Analysis of Block Lifting Process (블록의 리프팅 동적 구조해석을 위한 다물체 동역학 프로그램의 내장형 자동화 라이브러리 개발)

  • Jung, Da-un;Cha, Ju-Hwan;Song, Chang-Yong;Lee, Chung-Hyoung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.2
    • /
    • pp.135-143
    • /
    • 2016
  • In this study, an embedded system composed of equipment setting, block importing, scenario setting and output reporting is developed in multi-body dynamics program, ADAMS, for conducting dynamic structural analysis of block lifting process. First, equipment used for block lifting process is set in the simulation environment and the shapes and functions of two lifting beams, and six block loaders are provided as the equipment. Second, the modal analysis result of the lifting block is imported from the static structural analysis system, NASTRAN. Third, the lifting scenarios, such as hoisting, waiting, trolley moving, and wire connecting, are set in the system. Finally, output results in the forms of plots, texts and tables, are reported after the dynamic structural analysis. The test examples conducted in a shipyard are applied into the developed system in various condition and scenarios. The loads at the lug points, the stress contours, and the hot spot tables of the developed system are compared with the result of the static analysis system.

Multi-Body Dynamic Response Analysis of a MW-Class Wind Turbine System Considering Rotating and Flexibility (로터 회전 및 타워의 탄성력을 고려한 MW 급 풍력발전기의 비선형 다물체 동적 응답 해석)

  • Kim, Dong-Man;Kim, Dong-Hyun;Kim, Yo-Han;Kim, Su-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.78-83
    • /
    • 2009
  • In this study, computer applied engineering (CAE) techniques are fully used to conduct structural and dynamic analyses of a whole huge wind turbine system including composite blades, tower and nacelle. For this study, computational fluid dynamics (CFD) is used to predict aerodynamic loads of the rotating wind-turbine blade model. Multi-body dynamic structural analyses are conducted based on the non-linear finite element method (FEM) by using super-element method for composite laminates blade. Three-dimensional finite element model of a wind turbine system is constructed including power train(main shaft, gear box, coupling, generator), bedplate and tower. The results for multi-body dynamic simulations on the wind turbine's critical operating conditions are presented in detail.

  • PDF

Causal Loop-Based Structural Analyses of Marginal Ageing and Critical Mass Simulations for Demographic Extinction Scenarios in Eup and Myeon Regions (읍·면지역 한계고령화의 인과순환적 구조분석과 인구소멸 임계점에 대한 시뮬레이션)

  • Choi, Nam-Hee
    • Korean System Dynamics Review
    • /
    • v.17 no.1
    • /
    • pp.107-134
    • /
    • 2016
  • Accelerated ageing with low fertility is one of the most critical problems in Korea. Because of ageing via low fertility, Korea will face a serious demographic cliff. This research primarily focus on the analyzing the dynamics of the marginal ageing state and decreasing population especially in Eup and Myeon region. This study based on the system dynamics approaches for finding causal loop structure of marginal ageing and critical mass of population disappearing. The results of this study are summarized as follows. First, demographic marginalization trends have already begun in the Eups and Myons of Gun. Second, marginal aging speed in Eup/Myeon areas is causing an population disappearing in the near future. Third, critical mass of population disappearing will begin when the rate of marginal aging is exceed 82% after 2023.

Calculation of the Dynamic Contact Force between a Shipbuilding Block and Wire Ropes of a Goliath Crane for the Optimal Lug Arrangement (최적 러그 배치를 위한 골리앗 크레인의 와이어 로프와 선체 블록간의 동적 접촉력 계산)

  • Ku, Nam-Kug;Roh, Myung-Il;Cha, Ju-Hwan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.5
    • /
    • pp.375-380
    • /
    • 2012
  • In this study, dynamic load and dynamic contact force between a building block and wire ropes of a goliath crane are calculated during lifting or turn-over of a building block for the design of an optimal lug arrangement system. In addition, a multibody dynamics kernel for implementing the system were developed. In the multibody dynamics kernel, the equations of motion are constructed using recursive formulation. To evaluate the applicability of the developed kernels, the interferences and dynamic contact force between the building block and wire ropes were calculated and then the hull structural analysis for the block was performed using the calculation result.

Structural Phase Transformations in Semiconductor Material Induced by Nanoindentation (나노압입에 의한 반도체 소재의 구조상전이 해석)

  • Kim, D.E.;Oh, S.I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.77-80
    • /
    • 2006
  • Structural phase transformations of silicon during nanoindentation were investigated in detail at the atomic level. The molecular dynamics simulations of nanoindentation on the (100), (110) and (111) surface of single crystalline silicon were simulated, and this supported the theoretical prediction of the anisotropic behavior of structural phase transformations. Simulations showed that microscopic aspects of phase transformation varied according to the crystallographic orientation of the contact surface and were directly linked to the slip system.

  • PDF

A Structural Model of Intra-Organizational Diffusion of Information Technology: Firm′s Database System Adoption

  • Hyun, Jung-Suk
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.22 no.53
    • /
    • pp.55-67
    • /
    • 1999
  • The objectives of the study are to build a structural model of intra-organizational diffusion of information technology and to test this model. Data were collected from senior managers of the purchasing department through questionnaires and statistically analyzed using the structural equation modeling. The questionnaires were concerning firm's database system adoption. Key findings of the study are as follows. First, buying center dynamics (i.e., buying center decision centrality, participation in buying center, and top-management support) are substantially related to the intra-organizational diffusion. Second, environmental characteristics (i.e., market turbulence, technological turbulence, and competitive intensity) indirectly affect on intra-organizational diffusion via buying center dynamics.

  • PDF

Validation of HART II Structural Dynamics Predictions Based on Prescribed Airloads

  • Sa, Jeong-H.;You, Young-H.;Park, Jae-S.;Park, Soo-H.;Jung, Sung-N.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.3
    • /
    • pp.349-360
    • /
    • 2012
  • In this study, the accuracy of CSD (Comprehensive Structural Dynamics) analysis on the evaluation of blade aeroelastic responses and structural loads of HART(Higher harmonic Aeroacoustic Rotor Test) II baseline rotor is assessed using a comprehensive rotorcraft dynamics code, CAMRAD II, and a nonlinear flexible multi-body dynamics analysis code, DYMORE. Considering insufficient measurement data for HART II rotor, prescribed airloads computed by a three-dimensional compressible flow solver KFLOW are used to replace the lifting-line airloads and thereby enhance the prediction capability of the comprehensive analyses. The CSD results on blade elastic deflections using the prescribed airloads indicate more oscillatory behavior than those by lifting-line based approaches, but the wave pattern becomes improved by including artificial damping into the rotor system. It is demonstrated that the structural load predictions are improved significantly by the prescribed airloads approach against the measured data, as compared with an isolated CSD analysis.

Aerodynamic and Structural Design of 6kW Class Vertical-Axis Wind Turbine (6kW급 수직축 풍력발전기 형상 및 구조설계)

  • Kim, Dong-Hyun;Choi, Hyun-Chul;Lee, Jong-Wook;Ryu, Gyeong-Joong;Kim, Sung-Bok;Kim, Kwang-Won;Nam, Hyo-Woo;Lee, Myoung-Goo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.2
    • /
    • pp.52-58
    • /
    • 2011
  • In this study, the design and verification of 6 kW class lift-type vertical-axis wind turbine (VAWT) has been conducted using advanced CAE technique based on computational fluid dynamics (CFD), finite element method (FEM), and computational structural dynamics (CSD). Designed aerodynamic performance of the VAWT model is tested using unsteady CFD method. Designed structural safety is also tested through the evaluation of maximum induced stress level and resonance characteristics using FEM and CSD methods. It is importantly shown that the effect of master eccentricity due to rotational inertia needs to be carefully considered to additionally investigate dynamic stress and deformation level of the designed VAWT system.

Dynamics of Policy Persuasion : Cause vs. Outcome (정책설득의 다이내믹스 : 명분과 실리의 인과지도)

  • 김동환
    • Korean System Dynamics Review
    • /
    • v.2 no.1
    • /
    • pp.51-68
    • /
    • 2001
  • Politicians are competing to persuade their policies and to oppose other's. Policy persuasion is based on two independent reasons; moral causes vs. economic outcomes. There have been few studies on investigating and comparing their structural differences. This paper studies how policy makers use moral causes and economic outcomes in persuading their policies. Causal and cognitive structures of persuasions for and against sunshine policy are compared by cognitive map analysis. Finally, this study discusses how to use causal map analysis to understand moral causes and economic outcomes as tools for policy persuasion.

  • PDF

Transonic Aeroelastic Analysis of Business Jet Aircraft Wing Model (비즈니스 제트 항공기 날개의 천음속 공탄성 해석)

  • Kim, Yo-Han;Kim, Dong-Hyun;Tran, Thanh-Toan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.299-299
    • /
    • 2011
  • In this study, transonic aeroelastic response analyses have been conducted for the business jet aircraft configuration considering shockwave and flow separation effects. The developed fluid-structure coupled analysis system is applied for aeroelastic computations combining computational structural dynamics(CSD), finite element method(FEM) and computational fluid dynamics(CFD) in the time domain. It can give very accurate and useful engineering data on the structural dynamic design of advanced flight vehicles. For the nonlinear unsteady aerodynamics in high transonic flow region, Navier-Stokes equations using the structured grid system have been applied to wing-body configurations. In transonic flight region, the characteristics of static and dynamic aeroelastic responses have been investigated for a typical wing-body configuration model. Also, it is typically shown that the current computation approach can yield realistic and practical results for aircraft design and test engineers.

  • PDF