• 제목/요약/키워드: Dynamics modeling

검색결과 1,433건 처리시간 0.024초

Analysis of conventional drag and lift models for multiphase CFD modeling of blood flow

  • Yilmaz, Fuat;Gundogdu, Mehmet Yasar
    • Korea-Australia Rheology Journal
    • /
    • 제21권3호
    • /
    • pp.161-173
    • /
    • 2009
  • This study analyzes especially drag and lift models recently developed for fluid-solid, fluid-fluid or liquid-liquid two-phase flows to understand their applicability on the computational fluid dynamics, CFD modeling of pulsatile blood flow. Virtual mass effect and the effect of red blood cells, RBCs aggregation on CFD modeling of blood flow are also shortly reviewed to recognize future tendencies in this field. Recent studies on two-phase flows are found as very useful to develop more powerful drag-lift models that reflect the effects of blood cell's shape, deformation, concentration, and aggregation.

Thermal modeling and analysis of single phase LSPM (단상 LSPM의 열해석 모델링 및 특성 해석)

  • Ham, Sang-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • 제64권3호
    • /
    • pp.411-416
    • /
    • 2015
  • This paper presents the thermal modeling and analysis of Line power Start Permanent magnet Motor (LSPM). Thermal analysis of electrical machines is important because temperatures that are consistently too high will reduce the life time of machines and may lead to serious failure. Coefficients of convection are calculated according to the types of operating conditions. And computational fluid dynamics (CFD) technique is performed in order to predict thermal characteristic. The results are compared to the test results.

Multiscale Modeling and Simulation of Direct Methanol Fuel Cell (직접메탄올 연료전지의 Multiscale 모델링 및 전산모사)

  • Kim, Min-Su;Lee, Young-Hee;Kim, Jung-Hwan;Kim, Hong-Sung;Lim, Tae-Hoon;Moon, Il
    • Membrane Journal
    • /
    • 제20권1호
    • /
    • pp.29-39
    • /
    • 2010
  • This study focuses on the modeling of DMFC to predict the characteristics and to improve its performance. This modeling requires deep understanding of the design and operating parameters that influence on the cell potential. Furthermore, the knowledge with reference to electrochemistry, transport phenomena and fluid dynamics should be employed for the duration of mathematical description of the given process. Considering the fact that MEA is the nucleus of DMFC, special attention was made to the development of mathematical model of MEA. Multiscale modeling is comprised of process modeling as well as a computational fluid dynamics (CFD) modeling. The CFD packages and process simulation tools are used in simulating the steady-state process. The process simulation tool calculates theelectrochemical kinetics as well as the change of fractions, and at the same time, CFD calculates various balance equations. The integrated simulation with multiscal modeling explains experimental observations of transparent DMFC.

Lumped-parameter modeling of flexible manipulator dynamics

  • Kim, Jin-Soo;Konno, Atsushi;Uchiyama, Masaru;Usui, Kazuaki;Yoshimura, Kazuki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1994년도 Proceedings of the Korea Automatic Control Conference, 9th (KACC) ; Taejeon, Korea; 17-20 Oct. 1994
    • /
    • pp.117-122
    • /
    • 1994
  • In this paper, we discuss the modeling of flexible manipulators. In the modeling of flexible manipulators, there are two approaches: one is based on the distributed-parameter modeling and the other on the lumped-parameter modeling. The former has been applied to control and analysis of simple manipulator requiring precision, while the latter has been applied to multi-link spatial manipulator, because of the model's simplicity. We have already proposed the lumped-parameter modeling method for simple manipulator, and investigate that model of how much degree of precision we can get. The experiments and simulations are performed, comparing these results, the approximate performance of our modeling method is discussed.

  • PDF

Robust Adaptive Fuzzy Tracking Control Using a FBFN for a Mobile Robot with Actuator Dynamics (구동기 동역학을 가지는 이동 로봇에 대한 FBFN을 이용한 강인 적응 퍼지 추종 제어)

  • Shin, Jin-Ho;Kim, Won-Ho;Lee, Moon-Noh
    • Journal of Institute of Control, Robotics and Systems
    • /
    • 제16권4호
    • /
    • pp.319-328
    • /
    • 2010
  • This paper proposes a robust adaptive fuzzy tracking control scheme for a nonholonomic mobile robot with external disturbances as well as parameter uncertainties in the robot kinematics, the robot dynamics, and the actuator dynamics. In modeling a mobile robot, the actuator dynamics is integrated with the robot kinematics and dynamics so that the actuator input voltages are the control inputs. The presented controller is designed based on a FBFN (Fuzzy Basis Function Network) to approximate an unknown nonlinear dynamic function with the uncertainties, and a robust adaptive input to overcome the uncertainties. When the controller is designed, the different parameters for two actuator models in the actuator dynamics are taken into account. The proposed control scheme does not require the kinematic and dynamic parameters of the robot and actuators accurately. It can also alleviate the input chattering and overcome the unknown friction force. The stability of the closed-loop control system including the kinematic control system is guaranteed by using the Lyapunov stability theory and the presented adaptive laws. The validity and robustness of the proposed control scheme are shown through a computer simulation.

DC Motor Model Parameter Identification and Experimental Adjustment for Motor Controller Design (제어기 설계를 위한 DC 모터의 모델 파라미터 측정 및 실험적 보정)

  • Kang, Hyeong Seok;Shin, Dong Hun
    • Journal of the Korean Society for Precision Engineering
    • /
    • 제31권12호
    • /
    • pp.1147-1154
    • /
    • 2014
  • Generally, motor controller design is based on its motor dynamics. Therefore, it requires precise information of its motor dynamics. However, most of the low cost DC motors, which are widely used in industries and academia, are provided without such precise information. Even if it is given, the information is mostly imprecise. Following circumstances require one to calculate the motor dynamics information for oneself. This paper presents a simple method to readily apprehend the DC motor dynamics. First, how to establish the model of DC motor dynamics along with the model parameter identification is presented. Then, the parameter values are finetuned until the simulation response based on the dynamics model is close to the experimental response of the motor. Finally, the controller is designed with the established dynamics model. The validity of the designed controller is confirmed by the comparison of the experiment and simulation.

A System Dynamics View of Safety Management in Small Construction Companies

  • Guo, Brian H.W.;Yiu, Tak Wing;Gonzalez, Vicente A.
    • Journal of Construction Engineering and Project Management
    • /
    • 제5권4호
    • /
    • pp.1-6
    • /
    • 2015
  • Due to unique characteristics of small construction companies, safety management is comprised of complex problems. This paper aims to better understand the complexity and dynamics of safety management in small construction companies. A system dynamics (SD) model was built in order to capture the causal interdependencies between factors at different system levels (regulation, organization, technical and individual) and their effects on safety outcomes. Various tests were conducted to build confidence in the model's usefulness to understand safety problems facing small companies from a system dynamics view. A number of policies were analyzed by changing the value of parameters. The value of a system dynamics approach to safety management in small construction companies is its ability to address joint effects of multiple safety risk factors on safety performance with a systems thinking perspective. By taking into account feedback loops and non-linear relationships, such a system dynamics model provides insights into the complex causes of relatively poor safety performance of small construction companies and improvement strategies.

Analysis for the Driving Dynamic Characteristics of Large Scale Semi-Trailer Equipped with Swivel Axle and Hydropneumatic Suspension Unit (회전 차축 및 유기압 현가장치를 장착한 대용량 세미 트레일러의 주행 동특성 해석)

  • Ha, Taewan;Park, Jungsoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • 제25권2호
    • /
    • pp.196-209
    • /
    • 2022
  • Driving dynamic characteristics of semi-trailer loaded with precise equipments are very important to protect them from vibration, impact or other disturbances. In this paper, in order to identify the driving dynamic characteristics of the large scale semi-trailer equipped with swivel axle and hydropneumatic suspension unit, Dynamics Modeling & Simulation(M&S) were performed using general Dynamics Analysis Program(RecurDyn V9R2). The semi-trailer was modeled as two types - one is Multi Rigid Body Dynamics(MRBD) model, and the other Rigid-Flexible Body Dynamics(RFlex) one. The natural vibration mode and frequencies of semi-trailer body, acceleration of dummy-weight, pitch, roll and yaw of dummy-weight, swivel axle and hydropneumatic suspension cylinder support structure, and acting force of hydropneumatic suspensions etc. were obtained from the M&S. Additionally frequency analysis were performed using the data of behavior obtained from above M&S. Generally the quantitative results of RFlex are larger than them of MRBD in view of magnitude of the comparable parametric values.

Hull Design and Dynamic Performance Analysis for ray-type Underwater Glider (가오리형 수중글라이더의 형상설계 및 운동성능 해석)

  • Lee, Sung-Wook;Jeong, Jae-Hun;Jeong, Sang-Ki;Choi, Hyeung-Sik;Kim, Joon-Young
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • 제12권5호
    • /
    • pp.343-350
    • /
    • 2017
  • Underwater glider with a single buoyancy engine could generally obtain propulsive forces by moving the center of buoyancy and gravity. Futhermore, The hull and internal structure of underwater glider are designed according to the purpose of long-time operation, high speed and a wide variety of payloads (sensors, communications and etc.). In this paper, Ray-type underwater glider featuring flatfish is considered in view of hydrodynamics. The hull design is especially performed by the analysis of fluid resistance and dynamic performance. The resistance performance is analyzed using the Computational Fluid Dynamics (CFD). In addition, a simulation program is implemented in order to verify the validity of dynamics modeling and dynamic performances.

Computational Fluid Dynamics Modeling Studies on Bacterial Flagellar Motion

  • Kumar, Manickam Siva;Philominathan, Pichai
    • International Journal of Fluid Machinery and Systems
    • /
    • 제4권3호
    • /
    • pp.341-348
    • /
    • 2011
  • The study of bacterial flagellar swimming motion remains an interesting and challenging research subject in the fields of hydrodynamics and bio-locomotion. This swimming motion is characterized by very low Reynolds numbers, which is unique and time reversible. In particular, the effect of rotation of helical flagella of bacterium on swimming motion requires detailed multi-disciplinary analysis. Clear understanding of such swimming motion will not only be beneficial for biologists but also to engineers interested in developing nanorobots mimicking bacterial swimming. In this paper, computational fluid dynamics (CFD) simulation of a three dimensional single flagellated bacteria has been developed and the fluid flow around the flagellum is investigated. CFD-based modeling studies were conducted to find the variables that affect the forward thrust experienced by the swimming bacterium. It is found that the propulsive force increases with increase in rotational velocity of flagellum and viscosity of surrounding fluid. It is also deduced from the study that the forward force depends on the geometry of helical flagella (directly proportional to square of the helical radius and inversely proportional to pitch).