• Title/Summary/Keyword: Dynamical threshold

Search Result 14, Processing Time 0.018 seconds

Auxiliary domain method for solving multi-objective dynamic reliability problems for nonlinear structures

  • Katafygiotis, Lambros;Moan, Torgeir;Cheungt, Sai Hung
    • Structural Engineering and Mechanics
    • /
    • v.25 no.3
    • /
    • pp.347-363
    • /
    • 2007
  • A novel methodology, referred to as Auxiliary Domain Method (ADM), allowing for a very efficient solution of nonlinear reliability problems is presented. The target nonlinear failure domain is first populated by samples generated with the help of a Markov Chain. Based on these samples an auxiliary failure domain (AFD), corresponding to an auxiliary reliability problem, is introduced. The criteria for selecting the AFD are discussed. The emphasis in this paper is on the selection of the auxiliary linear failure domain in the case where the original nonlinear reliability problem involves multiple objectives rather than a single objective. Each reliability objective is assumed to correspond to a particular response quantity not exceeding a corresponding threshold. Once the AFD has been specified the method proceeds with a modified subset simulation procedure where the first step involves the direct simulation of samples in the AFD, rather than standard Monte Carlo simulation as required in standard subset simulation. While the method is applicable to general nonlinear reliability problems herein the focus is on the calculation of the probability of failure of nonlinear dynamical systems subjected to Gaussian random excitations. The method is demonstrated through such a numerical example involving two reliability objectives and a very large number of random variables. It is found that ADM is very efficient and offers drastic improvements over standard subset simulation, especially when one deals with low probability failure events.

High Resolution Probabilistic Quantitative Precipitation Forecasting in Korea

  • Oh, Jai-Ho;Kim, Ok-Yeon;Yi, Han-Se;Kim, Tae-Kuk
    • The Korean Journal of Quaternary Research
    • /
    • v.19 no.2
    • /
    • pp.74-79
    • /
    • 2005
  • Recently, several attempts have been made to provide reasonable information on unusual severe weather phenomena such as tolerant heavy rains and very wild typhoons. Quantitative precipitation forecasts and probabilistic quantitative precipitation forecasts (QPFs and PQPFs, respectively) might be one of the most promising methodologies for early warning on the flesh floods because those diagnostic precipitation models require less computational resources than fine-mesh full-dynamics non-hydrostatic mesoscale model. The diagnostic rainfall model used in this study is the named QPM(Quantitative Precipitation Model), which calculates the rainfall by considering the effect of small-scale topography which is not treated in the mesoscale model. We examine the capability of probabilistic diagnostic rainfall model in terms of how well represented the observed several rainfall events and what is the most optimistic resolution of the mesoscale model in which diagnostic rainfall model is nested. Also, we examine the integration time to provide reasonable fine-mesh rainfall information. When we apply this QPM directly to 27 km mesh meso-scale model (called as M27-Q3), it takes about 15 min. while it takes about 87 min. to get the same resolution precipitation information with full dynamic downscaling method (called M27-9-3). The quality of precipitation forecast by M27-Q3 is quite comparable with the results of M27-9-3 with reasonable threshold value for precipitation. Based on a series of examination we may conclude that the proosed QPM has a capability to provide fine-mesh rainfall information in terms of time and accuracy compared to full dynamical fine-mesh meso-scale model.

  • PDF

Enhanced ART1 Algorithm for the Recognition of Student Identification Cards of the Educational Matters Administration System on the Web (웹 환경 학사관리 시스템의 학생증 인식을 위한 개선된 ART1 알고리즘)

  • Park Hyun-Jung;Kim Kwang-Baek
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.5 s.37
    • /
    • pp.333-342
    • /
    • 2005
  • This paper proposes a method, which recognizes student's identification card by using image processing and recognition technology and can manage student information on the web. The presented scheme sets up an average brightness as a threshold, based on the brightest Pixel and the least bright one for the source image of the ID card. It is converting to binary image, applies a horizontal histogram, and extracts student number through its location. And, it removes the noise of the student number region by the mode smoothing with 3$\times$3 mask. After removing noise from the student number region, each number is extracted using vertical histogram and normalized. Using the enhanced ART1 algorithm recognized the extracted student number region. In this study, we propose the enhanced ART1 algorithm different from the conventional ART1 algorithm by the dynamical establishment of the vigilance parameter. which shows a tolerance limit of unbalance between voluntary and stored patterns for clustering. The Experiment results showed that the recognition rate of the proposed ART1 algorithm was improved much more than that of the conventional ART1 algorithm. So, we develop an educational matters administration system by using the proposed recognition method of the student's identification card.

  • PDF

Recognition of Car Plate using Gray Brightness Variation, HSI Information and Enhanced ART2 Algorithm (명암도 변화 및 HSI 정보와 개선된 ART2 알고리즘을 이용한 차량 번호판 인식)

  • 김광백;김영주
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.5
    • /
    • pp.379-387
    • /
    • 2001
  • We proposed an enhanced extraction method of vehicle plate, in which both the brightness variation of gray and the Hue value of HSI color model were used. For the extraction of the vehicle plate from a vehicle image, first of all, candidate regions for the vehicle plate were extracted from the image by using the property of brightness variation of the image. A real place region was determined among candidate regions by the density of pixels with the Hue value of green and white. For- extracting the feature area containing characters from the extracted vehicle plate, we used the histogram-based approach of individual characters. And we proposed and applied for the recognition of characters the enhanced ART2 algorithm which support the dynamical establishment of the vigilance threshold with the genera]iced union operator of Yager. In addition, we propose an enhanced SOSL algorithm which is integrated both enhanced ART2 and supervised learning methods. The performance evaluation was performed using 100's real vehicle images and the evaluation results demonstrated that the extraction rates of tole proposed extraction method were improved, compared with that of previous methods based un brightness variation, RGB and HSI individually . Furthermore, the recognition rates of the proposed algorithms were improved much more than that of the conventional ART2 and BP algorithms.

  • PDF