• 제목/요약/키워드: Dynamic voltage converter

검색결과 254건 처리시간 0.037초

멀티레벨 인버터를 이용한 SRM 운전특성 (Characteristic of SRM Drive using Multi-level Converter)

  • 왕혜군;이상훈;이동희;안진우
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.100-102
    • /
    • 2007
  • In this paper, a modified multi-level convert for low cost high speed switched reluctance (SR) drive is proposed The proposed multi-level converter has reduced number of power switches and diodes than that of a conventional asymmetric converter for SRM, and lower voltage rating of the dump capacitor comparing with energy efficient c-dump converter. It can supply five operating modes that is boosted, DC-link, zero, negative bias and negative boosted voltage. The proposed multi-level converter has fast excitation and demagnetization modes of phase current, so dynamic response can be achieved. The proposed multi-level converter is verified by computer simulation and experimental results.

  • PDF

전력전자 변압기로 동작하는 저전압 직류배전 기능을 갖는 Quasi Z-소스 AC-AC 컨버터 (A Quasi Z-Source AC-AC Converter with a Low DC Voltage Distribution Capability Operating as a Power Electronic Transformer)

  • 류대현;엄준현;정영국;임영철
    • 전기학회논문지
    • /
    • 제63권3호
    • /
    • pp.358-366
    • /
    • 2014
  • This paper proposes a quasi Z-source AC-AC converter with the low DC voltage distribution capability operating as a power electronic transformer. The proposed system has configuration that the input terminals of two quasi Z-source AC-AC converters are connected in parallel, also their output terminal are connected in series. Simple control method of duty ratio was proposed for the in phase buck-boost AC voltage mode and the DC output voltage control. DSP based experiment and PSIM simulation were performed. As a result, the PSIM simulation results were same with the measured results. By controlling the duty ratio under the condition of 100 [${\Omega}$] load, quasi Z-source AC-AC converter could buck and boost the AC output voltage in phase with the AC input voltage, and the same time, the constant DC voltage could be output without affecting the AC output characteristics. And, the DC output voltage 48[V] was constantly controlled in dynamic state in case while the load is suddenly changed ($50[\Omega]{\rightarrow}100[\Omega]$). From the above result, we could know that the quasi Z-source AC-AC converter can act as a power electronic transformer with a low DC voltage distribution capability.

D-UPFC Application as the Series Power Device in the Massive Roof-top PVs and Domestic Loads

  • Lee, Kyungsoo
    • Current Photovoltaic Research
    • /
    • 제4권4호
    • /
    • pp.131-139
    • /
    • 2016
  • This paper shows the series power device in the massive roof-top PVs and domestic loads. D-UPFC as the series power device controls the distribution voltage during voltage rise (or fall) condition. D-UPFC consists of the bi-directional ac-ac converter and the transformer. In order to verify the D-UPFC voltage control, the distribution model is used in the case study. D-UPFC enables the voltage control in the distribution voltage range. Dynamic voltage control from voltage rise and voltage fall conditions is performed. Scaled-down experimental test of the D-UPFC is verified the voltage control and it is well performed without high voltage spikes in the inductive load.

4-레벨 콘버터를 이용한 SRM의 순시 토오크 제어 기법 (Direct Instantaneous Torque Control of SRM using 4-level Converter)

  • 이동희;이상훈;안진우
    • 전력전자학회논문지
    • /
    • 제12권3호
    • /
    • pp.205-212
    • /
    • 2007
  • 본 논문에서는 토오크 맥동을 줄이고 동특성 및 효율을 개선하기 위해 새로운 4-레벨 콘버터 이용한 DITC SRM 구동방식을 제안하였다. 4-레벨 콘버터는 콘덴서의 전압을 이용하여 여자 및 감자 시 높은 전압을 인가하여 여자특성을 개선할 수 있는 장점을 가진다. 본 논문에서는 DITC의 동특성 개선을 위해 사용된 4-레벨 콘버터의 동작특성과 부스트 전압에 따른 효율 개선에 대해 해석하였다. 이를 통해 제안된 SRM을 위한 4-레벨 콘버터의 DITC 제어기법을 시뮬레이션과 실험을 통해 검증하였다.

Hybrid Power Management System Using Fuel Cells and Batteries

  • Kim, Jae Min;Oh, Jin Seok
    • Journal of information and communication convergence engineering
    • /
    • 제14권2호
    • /
    • pp.122-128
    • /
    • 2016
  • In the future, hybrid power management systems using fuel cells (FCs) and batteries will be used as the driving power systems of ships. These systems consist of an FC, a converter, an inverter, and a battery. In general, an FC provides steady-state energy; a battery provides the dynamic energy in the start state of a ship for enabling a smooth operation, and provides or absorbs the peak or dynamic power when the load varies and the FC cannot respond immediately. The FC voltage range is very wide and depends on the load; Therefore, the FC cannot directly connect to the inverter. In this paper, we propose a power management strategy and design process involving a unidirectional converter, a bidirectional converter, and an inverter, considering the ship's operating conditions and the power conditions of the FC and the battery. The presented experimental results were verified through a simulation.

ZVT 풀 브리지 DC/DC 컨버터의 병렬 운전 및 제어기 설계에 관한 연구 (A Study on the Parallel Operation and Control Loop Design of ZVT-Full Bridge DC/DC Converter)

  • 배진용;김용;윤석호;장성원;이규훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.324-328
    • /
    • 2001
  • This paper presents parallel operation and control loop design of ZVT(Zero Voltage Transition) Full Bridge DC/DC Converter. At parallel operation of ZVT Full Bridge Converter, dynamic current shared inductor devides the same current of unit converter and ZVT circuit and aids to high efficiency in the system. Base on the modeling of ZVT. Full Bridge Converter, the control loop is designed using a simple two-pole, one-zero compensation circuit. To show the validity of the design procedures, the small signal analysis of the closed loop system and open loop system is carried out and the superiority of the dynamic characteristics is verified through the experiment with a 2kW, 50kHz prototype converter.

  • PDF

제주계통에 적용 가능한 유형별 HVDC 시스템의 동적 안정도 연구 (A Study on Dynamic Stability of HVDC System Type which may be Applied the Jeju AC Network)

  • 권영훈;김용학;김찬기;최영도
    • 전력전자학회논문지
    • /
    • 제13권4호
    • /
    • pp.270-277
    • /
    • 2008
  • Capacitor Commutated Converter HVDC(High Voltage Direct Current) 시스템은 무효전력의 수급이 작기 때문에 점호각이 180도까지 증가시킬 수 있으므로 취약한 계통에 적용이 가능하다. 따라서, 본 논문에서는 변압기와 밸브 사이에 직렬커패시터가 연결된 CCC 컨버터, CSCC 컨버터 및 전형적인 전류형 컨버터에 대해 분석하고, 계통의 안정도 측면에서 PSCAD/EMTDC로 CCC 컨버터의 HVDC를 모의함으로써 신뢰성이 높음을 제시하였다.

Dynamic Voltage Restorer Prototype 설계에 관한 연구 (A Study on the Design of the Dynamic Voltage Restorer Prototype)

  • 김지원;전영환;전진홍;오태규;박동욱
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제50권3호
    • /
    • pp.140-145
    • /
    • 2001
  • The instantaneous voltage drop is occurred when the fault is happened on the nearby feeders. The instantaneous voltage drop is continued during relatively short period. But, the effect of it can be very severe to some sensitive devices. That is, it can be the reason of restart or malfunction of some devices. And these phenomenons can cause the enormous economical damage and shorten the lifetime of the devices. In this paper, the device which can compensate the instantaneous voltage drop, is studied. Through the computer simulation using PSCAD/EMTDC, the validity of the control algorithm using peak detection method is verified. And the Dynamic Voltage Restorer(DVR) prototype is designed and constructed. Through the experiment, the function and performance of the DVR prototype is verified.

  • PDF

부하전류와 듀티를 보상하는 단상 PFC 부스트 컨버터 제어기 설계 (A Study of Design Single Phase Boost Converter Controller for Compensated Load Current and Duty)

  • 임재욱;이승태;백승우;김학원;조관열;최재호
    • 전력전자학회논문지
    • /
    • 제22권6호
    • /
    • pp.527-534
    • /
    • 2017
  • This paper proposes a new DC link voltage controller for a single-phase power factor correction (PFC) boost converter. The load current of the PFC boost converter affects the capacitor current, whereas the load current changes the output voltage. However, previous works that compensate output current have failed to consider the relationship between load current and duty. Thus, they also fail to maintain a constant output voltage if the load fluctuates under the conditions of a non-rated input voltage. By considering the duty in the load current compensation, the proposed method improves the load transient response regardless of the input voltage. To demonstrate its effectiveness, the proposed method is compared with other control methods by conducting PSM simulations and experiments under a rapidly changing load.

전류 제어 루프에 보상을 행하지 않는 능동 역률 제어 AC/DC 컴버터의 제어기 설계 (Design of active power factor control AC/DC converter having current control loop with no compensator)

  • 이인호;김성환;유지윤;박귀태
    • 대한전기학회논문지
    • /
    • 제45권2호
    • /
    • pp.216-223
    • /
    • 1996
  • The active power factor control AC/DC converter needs a current loop compensator to obtain better dynamic characteristics and power factor performance, but the optimal design of a current loop compensator is difficult because the AC/DC converter is a nonlinear system having periodically varying poles and zeros. The predictive current control scheme generates a control input using the dynamic equations of the AC/DC converter so that the dynamic of the AC/DC converter is included in the controller and the necessary bandwidth and the gain characteristics of the current control loop are satisfied. And as a result, a compensator becomes unnecessary and the current loop shows the improved current loop characteristics. In this paper, a power factor controller without current loop compensator by adopting a predictive current control scheme is designed and the designed power factor controller is modelled by using a small signal perturbation modelling technique, and simulated to investigate its small signal characteristics. A 200 W power factor control AC/DC converter is built to verify the effectiveness of the proposed power factor controller.

  • PDF