• Title/Summary/Keyword: Dynamic viscosity

Search Result 324, Processing Time 0.038 seconds

Relationship between Steady Flow and Dynamic Rheological Properties for Viscoelastic Polymer Solutions - Examination of the Cox-Merz Rule Using a Nonlinear Strain Measure - (점탄성 고분자 용액의 정상유동특성과 동적 유변학적 성질의 상관관계 -비선헝 스트레인 척도를 사용한 Cox-Merz 법칙의 검증-)

  • 송기원;김대성;장갑식
    • The Korean Journal of Rheology
    • /
    • v.10 no.4
    • /
    • pp.234-246
    • /
    • 1998
  • The objective of this study is to investigate the correlation between steady shear flow (nonlinear behavior) and dynamic viscoelastic (linear behavior) properties for concentrated polymer solutions. Using both an Advanced Rheometic Expansion System(ARES) and a Rheometics Fluids Spectrometer (RFS II), the steady shear flow viscosity and the dynamic viscoelastic properties of concentrated poly(ethylene oxide)(PEO), polyisobutylene(PIB), and polyacrylamide(PAAm) solutions have been measured over a wide range of shear rates and angular frequencies. The validity of some previously proposed relationships was compared with experimentally measured data. In addition, the effect of solution concentration on the applicability of the Cox-Merz rule was examined by comparing the steady flow viscosity and the magnitude of the complex viscosity Finally, the applicability of the Cox-Merz rule was theoretically discussed by introducing a nonlinear strain measure. Main results obtained from this study can be summarized as follows : (1) Among the previously proposed relationships dealt with in this study, the Cox-Merz rule implying the equivalence between the steady flow viscosity and the magnitude of the complex viscosity has the best validity. (2) For polymer solutions with relatively lower concentration, the steady flow viscosity is higher than the complex viscosity. However, such a relation between the two viscosities is reversed for highly concentrated polymer solutions. (3) A nonlinear strain measure is decreased with increasing stran magnitude, after reaching the maximum value in small strain range. This behavior is different from the theoretical prediction demonstrating the shape of a damped oscillatory function. (4) The applicability of the Cox-Merz rule is influenced by the $\beta$ value, which indicates the slope of a nonlinear stain measure (namely, the degree of nonlinearity) at large shear deformations. The Cox-Merz rule shows better applicability as the $\beta$ value becomes smaller.

  • PDF

Small and Large Deformation Rheological Behaviors of Commercial Hot Pepper-Soybean Pastes

  • Choi, Su-Jin;Kang, Kyoung-Mo;Yoo, Byoung-Seung
    • Food Science and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.871-876
    • /
    • 2006
  • Rheological behavior of commercial hot pepper-soybean paste (HPSP) was evaluated in small amplitude oscillatory and steady shear tests. Storage modulus (G'), loss modulus (G"), and complex viscosity (${\eta}^*$) as a function of angular frequency (${\omega}$), and shear stress (${\sigma}$) as a function of shear rate (${\gamma}$) data were obtained for 5 commercial HPSP samples. HPSP samples at $25^{\circ}C$ exhibited a non-Newtonian, shear-thinning flow behavior with high yield stresses and their flow behaviors were described by power law, Casson, and Herschel-Bulkley models. Time-dependent flow properties were also described by the Weltman, Hahn, and Figoni & Shoemaker models. Apparent viscosity over the temperature range of $5-35^{\circ}C$ obeyed the Arrhenius temperature relationship with activation energies (Ea) ranging 18.3-20.1 kJ/mol. Magnitudes of G' and G" increased with an increase in ${\omega}$, while ${\eta}^*$ decreased. G' values were higher than G" over the most of the frequency range (0.63-63 rad/sec), showing that they were frequency dependent. Steady shear viscosity and complex viscosity of the commercial HPSP did not fit the Cox-Merz rule.

Effects of the Concentration and the Temperature on the Thermophysical Properties of Purely-Viscous Non-Newtonian Fluid (순수점성 비뉴톤유체의 물성치들에 대한 농도 및 온도의 영향)

  • 조금남
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.670-680
    • /
    • 1994
  • The thermophysical properties of Non-Newtonian fluid as the function of the temperature and the concentration are needed in many rheological heat transfer and fluid mechanics problems. The present work investigated the effects of the concentration and the temperature on the thermophysical properties of purely-viscous Non-Newtonian fluids such as the isobaric thermal expansion coefficient, density, zero-shear-rate viscosity, and zero-shear-rate dynamic viscosity within the experimental temperature range from $25^{\circ}C$ to $55^{\circ}C$. The densities of the test fluids were determined as the function of the temperature by utilizing a reference density and the least square equation for the measured isobaric thermal expansion coefficient. As the concentration of purely-viscous Non-Newtonian fluid was increased up to 10,000 wppm, the densities were proportionally increased up to 0.4%. The zero-shear-rate viscosities of test fluids were measured before and after the measurements of the first thermal expansion coefficients and the densities of Non-Newtonian fluid. Even though they were changed up to approximately 22% due to thermal aging and cycling, they had no effects on the thermal expansion coefficients and the densities of Non-Newtonian fluid. The zero-shear-rate dynamic viscosities for purely-viscous Non-Newtonian fluids were compared with the values for distilled water. They showed the similar trend with the zero-shear-rate viscosities due to small differences in the densities for both distilled water and purely-viscous Non-Newtonian fluid.

Effect of NaCl Addition on Rheological Behaviors of Commercial Gum-Based Food Thickener Used for Dysphagia Diets

  • Cho, Hyun-Moon;Yoo, Whachun;Yoo, Byoungseung
    • Preventive Nutrition and Food Science
    • /
    • v.20 no.2
    • /
    • pp.137-142
    • /
    • 2015
  • Rheological properties of thickened fluids used for consumption by people with dysphagia (swallowing difficulty) are very sensitive to several factors, such as thickener type, temperature, pH, sugar, protein, and NaCl. In this study, steady and dynamic rheological properties of thickened water samples mixed with five commercial xanthan gum-based food thickeners (A~E) were studied in the presence of NaCl at different concentrations (0.3%, 0.6%, 0.9%, and 1.2%). The magnitudes of apparent viscosity (${\eta}_{a,50}$), consistency index (K), yield stress (${\sigma}_{oc}$), and dynamic moduli (G' and G") showed significant differences in rheological behaviors between thickened samples with various NaCl concentrations. Dynamic moduli values of all thickened samples, except for samples with thickener C, were much higher than those of the control (0% NaCl). All rheological parameter values (K, G', and G") in a thickener A were much higher than those in other thickeners. These results suggest that rheological properties of thickened samples containing NaCl are strongly affected by xanthan gum-NaCl interaction and depended on the type of thickener.

Rheological Behavior of Viscoelastic Semi-Solid Ointment Base (Vaseline) in Oscillatory Shear Flow Fields (진동전단유동장에서 점탄성 반고형 연고기제(바셀린)의 레올로지 거동)

  • Song, Ki-Won;Chang, Gap-Shik
    • Journal of Pharmaceutical Investigation
    • /
    • v.36 no.1
    • /
    • pp.31-38
    • /
    • 2006
  • Using a Rheometries Dynamic Analyzer (RDA II), the dynamic viscoelastic properties of a semi-solid ointment base (vaseline) in large amplitude oscillatory shear flow fields were measured over a temperature range of $25{\sim}45^{\circ}C$ and the linear viscoelastic behavior in small amplitude oscillatory shear flow fields was investigated over a wide range of angular frequencies. In this article, the nonlinear viscoelastic behavior was reported from the experimentally obtained data and the effect of temperature on this behavior was discussed in detail. In addition, the angular frequency and temperature dependencies of a linear viscoelastic behavior were explained. Finally, the applicability of a time-temperature superposition principle originally developed for polymeric materials was examined using a shift factor. Main results obtained from this study can be summarized as follows : (1) At very small strain amplitude region, vaseline shows a linear viscoelastic behavior independent of the imposed deformation magnitudes. Above a critical strain amplitude $({\gamma}_{0}=0.1{\sim}0.2%)$, however, vaseline exhibits a nonlinear viscoelastic behavior ; indicating that both the storage modulus and dynamic viscosity are sharply decreased with increasing deformation magnitude. (2) In large amplitude oscillatory shear flow fields, an elastic behavior (storage modulus) has a stronger strain amplitude dependence and begins to show a nonlinear behavior at a smaller strain amplitude region than does a viscous behavior (dynamic viscosity). (3) In small amplitude oscillatory shear flow fields, the storage modulus as well as the loss modulus are continuously increased as an increase in angular frequency and an elastic nature is always superior to a viscous behavior over a wide range of angular frequencies. (4) A time-temperature superposition principle can successfully be applicable to vaseline. This finding allows us to estimate the dynamic viscoelastic behavior of vaseline over an extraordinarily extended range (11 decades) of angular frequencies inaccessible from the experimentally measured range (4 decades).

Effect of surfactant addition on curtain coating color properties and curtain stability (계면활성제 첨가가 커튼 코팅용 도공액의 물성과 커튼 안정성에 미치는 영향)

  • Oh, Kyu-Deok;Kim, Chae-Hoon;Youn, Hye-Jung;Lee, Hak-Lae
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.43 no.5
    • /
    • pp.49-54
    • /
    • 2011
  • Curtain coating has been considered as the best coating technology because it is a coating technology that forms contour coating layer with better coverage. To increase the curtain stability surfactants are being used. In this study, the effect of a surfactant on the stability of curtain coating colors was examined by evaluating dynamic surface tension with a bubble surface tensiometer. Di-2-ethylhexyl sodium sulfosuccinate was used as a surfactant since it showed low dynamic surface tension at low surface age. And we evaluated the influence of surfactant on coating color properties including surface tension, viscosity and curtain stability. The surface tension of coating color was decreased when surfactant addition was increased up to 0.5 pph, but it was leveled off at 0.3 pph of surfactant addition. With the increase of surfactant addition rate, viscosity of coating color were increased. Micelles formed by surfactant contributed to the increase of the viscosity. Curtain stability was improved with the addition of surfactant until it reached up to 0.5 pph. Excessive addition of surfactant (> 0.5 pph) didn't improve curtain stability. This was attributed to Marangoni effect(self-healing) and decreasing of curtain thickness.

Study on Mixing Condition of the Rubber Composite Containing Functionalized S-SBR, Silica and Silane : I. Effect of Mixing Temperature (변성 S-SBR Silica-Silane 고무복합체의 배합조건에 대한 연구 : I. 배합온도의 영향)

  • Jang, Suk-Hee;Kim, Wook-Soo;Kang, Yong-Gu;Han, Min-Hyun;Chang, Sang-Mok
    • Elastomers and Composites
    • /
    • v.48 no.2
    • /
    • pp.94-102
    • /
    • 2013
  • Characteristics of rubber mixture were evaluated in order to find the optimum mixing conditions of compounds containing silica and silane at various temperatures. With different mixing temperatures of 105, 120, 130, 140 and $160^{\circ}C$, the viscosity of the compound mixed at $105^{\circ}C$ showed a very high viscosity value. Compounds mixed the temperature range from at $120^{\circ}C$ to $140^{\circ}C$ showed lower viscosity than the compound mixed at $105^{\circ}C$. However, the difference was found to be small in those temperature ranges. On the contrary, at the mixing temperature of $160^{\circ}C$, the viscosity of compound increased again. Through the physical and dynamic observations, it was verified that at the mixing temperature below $120^{\circ}C$ only insufficient silica-silane reaction has been obtained. In addition, with the elevated mixing temperature of $160^{\circ}C$, Cross-linking occurred during mixing by the sulfur contained in coupling agent. In the temperature ranges from $120^{\circ}C$ to $140^{\circ}C$, because of the fast coupling reaction at higher temperature, it was thought to be more advantageous during reaction even though the trend of viscosity and dynamic mechanical property was not clear.

Studies on the Packing Characteristics of Coating Colors Based on the Rheological Properties at High Shear Rates (고전단점도 측정에 의한 도공액의 패킹 특성 연구)

  • 이학래;성용주
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.29 no.2
    • /
    • pp.7-15
    • /
    • 1997
  • High shear viscosity at several solids levels was measured for a number of pigment slurries and coating colors containing either anionic or amphoteric latex and analyzed according to Mooney and Eiler equations. Maximum packing fraction and intrinsic viscosity were obtained and compared. Eiler equation provides more credible information than Mooney equation on particle packing and intrinsic viscosity. The packing fraction obtained from Eiler equation was slightly greater than that obtained from static FCC measurement indicating the influence of pigment movement under the dynamic condition. Amphoteric latex caused 4-5% increase of maximum packing fraction of a coating color when its pH is lowered from 7 to 6, while anionic latex did not show any significant change in packing characteristics.

  • PDF

Breakup Process and Wave Development Characteristics of Gel Propellant Simulants at Various Gelling Agent Contents (젤 모사 추진제의 점도 변화에 따른 분무 분열 및 파장 변화 특성)

  • Hwang, Tae-Jin;Lee, In-Chul;Kim, Jung-Hun;Kim, Do-Hun;Koo, Ja-Ye
    • Journal of ILASS-Korea
    • /
    • v.16 no.3
    • /
    • pp.140-145
    • /
    • 2011
  • Gelled propellants are non-Newtonian fluids in which the viscosity is a function of the shear rate, and they have a high dynamic shear viscosity which depends on the amount of gelling agent contents. The present study has focused on the breakup process, wave development of ligament and liquid sheets formed by impinging jets with various gelling agent contents. The breakup process of like-on-like doublet impinging jets are experimentally characterized using non-Newtonian liquids. The spray shape with elliptical pattern is distributed in a perpendicular direction to the momentum vectors of the jets. Gelled propellant simulants with high viscosity jets are more stable and produce less pronounced surface waves than low viscosity jets. Gelled propellant simulants from like-on-like doublet impinging jets have the spray shape of closed rim patterns at low pressure. As the injection pressure increased, rimless patterns which were composed of ligament sheets and small droplets emerged due to the effect of the aerodynamic action.

Dynamic Characteristics of a Beam Sujected to an Axial Force and a Force of Time Dependent Frequency - Effect of Solid Viscosity - (시간종속적 하중을 받는 축하중을 받을 때의 동특성 - 고체점성 고찰 -)

  • 정태진;박영조
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.4
    • /
    • pp.456-462
    • /
    • 1986
  • 본 논문은 Voigt형의 고체점성을 갖는 단순기지보에 외부기진력이 sin(1/2 at$^{2}$+1/3bt$^{3}$)인 꼴로 작용할 때에 축하중 및 각속도의 변화에 따른 동적 처짐 효과를 고찰하였다.