• 제목/요약/키워드: Dynamic viscosity

검색결과 325건 처리시간 0.025초

점탄성 고분자 용액의 정상유동특성과 동적 유변학적 성질의 상관관계 -비선헝 스트레인 척도를 사용한 Cox-Merz 법칙의 검증- (Relationship between Steady Flow and Dynamic Rheological Properties for Viscoelastic Polymer Solutions - Examination of the Cox-Merz Rule Using a Nonlinear Strain Measure -)

  • 송기원;김대성;장갑식
    • 유변학
    • /
    • 제10권4호
    • /
    • pp.234-246
    • /
    • 1998
  • 본 연구의 목적은 고분자 농후용액의 정상유동특성(비선형 거동)과 소진폭 전단변형하에서의 동적 점탄성(선형 거동) 간에 존재하는 상관관계를 파악함에 있다. 이를 위해 Advanced Rheometric Expansion System(ARES)과 Rheometrics Fluids Spectrometer (RFS II)를 사용하여 폴리에틸렌 옥사이드, 폴리이소부틸렌 및 폴리아크릴 아마이드 농후용액의 정상류점도 및 동적 선형 점탄성을 광범위한 전단속도와 각주파수 영역에서 측정하였다. 이들 측정결과로부터 정상류점도와 동적점도 또는 동적 유동성간의 상관관계를 제시한 몇 가지 관계식의 적용성을 비교.검토하였다. 그리고 정상류점도와 복소점도의 절대치를 비교하여 양자간의 등가관계를 나타내는 Cox-Merz 법칙의 적용성에 대한 농도의 영향을 실험적으로 검증하였다. 나아가서 대변형하에서의 비선형성의 정도를 나타내는 비선형 스트레인 척도의 개념을 도입하여 Cox-Merz 법칙의 적용성에 미치는 영향을 이론적 관점에서 고찰하였다. 이상의 연구를 통해 얻어진 결과를 요약하면 다음과 같다. (1) 정상류점도의 전단속도 의존성과 동적 점탄성의 각주파수 의존성간에 제시된 여러 관계식들 중에서 정상류점도와 복소점도 절대치간의 등가관계를 나타내는 Cox-Merz법칙이 가장 우수한 적용성을 갖는다. (2) 높은 전단속도 또는 각주파수 영역에서는 정상류점도와 복소점도의 관계가 용액 농도에 따라 서로 상이하게 나타난다. 즉 낮은 농도의 용액에서는 정상류점도가 복소점도에 비해 다소 큰 값을 나타내며, 농도가 증가할수록 이러한 경향은 역전되어 높은 농도의 용액에서는 복소점도가 정상류점도에 비해 큰 값을 갖는다. (3) 비선형 스트레인 척도는 작은 크기의 변형량에서는 직선적으로 증가하다가 점차적으로 그 증가율이 감소하여 최대치에 도달한 후 그 이상의 변형량 영역에서는 변형량이 증가함에 따라 점차 감소하는 거동을 나타낸다. 이러한 거동은 스트레인 증가에 따라 진폭이 점차로 감소하는 감쇠진동함수의 형태를 갖는 이론적 예측과는 상당한 차이를 나타낸다. (4) 대변형하에서 비선형 스트레인 척도의 기울기 (고분자 용액의 비선형성의 정도)는 Cox-Merz 법칙의 적용성에 영향을 미치며, 이 값이 감소할수록 Cox-Merz 법칙은 더욱 잘 성립한다.

  • PDF

Small and Large Deformation Rheological Behaviors of Commercial Hot Pepper-Soybean Pastes

  • Choi, Su-Jin;Kang, Kyoung-Mo;Yoo, Byoung-Seung
    • Food Science and Biotechnology
    • /
    • 제15권6호
    • /
    • pp.871-876
    • /
    • 2006
  • Rheological behavior of commercial hot pepper-soybean paste (HPSP) was evaluated in small amplitude oscillatory and steady shear tests. Storage modulus (G'), loss modulus (G"), and complex viscosity (${\eta}^*$) as a function of angular frequency (${\omega}$), and shear stress (${\sigma}$) as a function of shear rate (${\gamma}$) data were obtained for 5 commercial HPSP samples. HPSP samples at $25^{\circ}C$ exhibited a non-Newtonian, shear-thinning flow behavior with high yield stresses and their flow behaviors were described by power law, Casson, and Herschel-Bulkley models. Time-dependent flow properties were also described by the Weltman, Hahn, and Figoni & Shoemaker models. Apparent viscosity over the temperature range of $5-35^{\circ}C$ obeyed the Arrhenius temperature relationship with activation energies (Ea) ranging 18.3-20.1 kJ/mol. Magnitudes of G' and G" increased with an increase in ${\omega}$, while ${\eta}^*$ decreased. G' values were higher than G" over the most of the frequency range (0.63-63 rad/sec), showing that they were frequency dependent. Steady shear viscosity and complex viscosity of the commercial HPSP did not fit the Cox-Merz rule.

순수점성 비뉴톤유체의 물성치들에 대한 농도 및 온도의 영향 (Effects of the Concentration and the Temperature on the Thermophysical Properties of Purely-Viscous Non-Newtonian Fluid)

  • 조금남
    • 대한기계학회논문집
    • /
    • 제18권3호
    • /
    • pp.670-680
    • /
    • 1994
  • The thermophysical properties of Non-Newtonian fluid as the function of the temperature and the concentration are needed in many rheological heat transfer and fluid mechanics problems. The present work investigated the effects of the concentration and the temperature on the thermophysical properties of purely-viscous Non-Newtonian fluids such as the isobaric thermal expansion coefficient, density, zero-shear-rate viscosity, and zero-shear-rate dynamic viscosity within the experimental temperature range from $25^{\circ}C$ to $55^{\circ}C$. The densities of the test fluids were determined as the function of the temperature by utilizing a reference density and the least square equation for the measured isobaric thermal expansion coefficient. As the concentration of purely-viscous Non-Newtonian fluid was increased up to 10,000 wppm, the densities were proportionally increased up to 0.4%. The zero-shear-rate viscosities of test fluids were measured before and after the measurements of the first thermal expansion coefficients and the densities of Non-Newtonian fluid. Even though they were changed up to approximately 22% due to thermal aging and cycling, they had no effects on the thermal expansion coefficients and the densities of Non-Newtonian fluid. The zero-shear-rate dynamic viscosities for purely-viscous Non-Newtonian fluids were compared with the values for distilled water. They showed the similar trend with the zero-shear-rate viscosities due to small differences in the densities for both distilled water and purely-viscous Non-Newtonian fluid.

Effect of NaCl Addition on Rheological Behaviors of Commercial Gum-Based Food Thickener Used for Dysphagia Diets

  • Cho, Hyun-Moon;Yoo, Whachun;Yoo, Byoungseung
    • Preventive Nutrition and Food Science
    • /
    • 제20권2호
    • /
    • pp.137-142
    • /
    • 2015
  • Rheological properties of thickened fluids used for consumption by people with dysphagia (swallowing difficulty) are very sensitive to several factors, such as thickener type, temperature, pH, sugar, protein, and NaCl. In this study, steady and dynamic rheological properties of thickened water samples mixed with five commercial xanthan gum-based food thickeners (A~E) were studied in the presence of NaCl at different concentrations (0.3%, 0.6%, 0.9%, and 1.2%). The magnitudes of apparent viscosity (${\eta}_{a,50}$), consistency index (K), yield stress (${\sigma}_{oc}$), and dynamic moduli (G' and G") showed significant differences in rheological behaviors between thickened samples with various NaCl concentrations. Dynamic moduli values of all thickened samples, except for samples with thickener C, were much higher than those of the control (0% NaCl). All rheological parameter values (K, G', and G") in a thickener A were much higher than those in other thickeners. These results suggest that rheological properties of thickened samples containing NaCl are strongly affected by xanthan gum-NaCl interaction and depended on the type of thickener.

진동전단유동장에서 점탄성 반고형 연고기제(바셀린)의 레올로지 거동 (Rheological Behavior of Viscoelastic Semi-Solid Ointment Base (Vaseline) in Oscillatory Shear Flow Fields)

  • 송기원;장갑식
    • Journal of Pharmaceutical Investigation
    • /
    • 제36권1호
    • /
    • pp.31-38
    • /
    • 2006
  • Using a Rheometries Dynamic Analyzer (RDA II), the dynamic viscoelastic properties of a semi-solid ointment base (vaseline) in large amplitude oscillatory shear flow fields were measured over a temperature range of $25{\sim}45^{\circ}C$ and the linear viscoelastic behavior in small amplitude oscillatory shear flow fields was investigated over a wide range of angular frequencies. In this article, the nonlinear viscoelastic behavior was reported from the experimentally obtained data and the effect of temperature on this behavior was discussed in detail. In addition, the angular frequency and temperature dependencies of a linear viscoelastic behavior were explained. Finally, the applicability of a time-temperature superposition principle originally developed for polymeric materials was examined using a shift factor. Main results obtained from this study can be summarized as follows : (1) At very small strain amplitude region, vaseline shows a linear viscoelastic behavior independent of the imposed deformation magnitudes. Above a critical strain amplitude $({\gamma}_{0}=0.1{\sim}0.2%)$, however, vaseline exhibits a nonlinear viscoelastic behavior ; indicating that both the storage modulus and dynamic viscosity are sharply decreased with increasing deformation magnitude. (2) In large amplitude oscillatory shear flow fields, an elastic behavior (storage modulus) has a stronger strain amplitude dependence and begins to show a nonlinear behavior at a smaller strain amplitude region than does a viscous behavior (dynamic viscosity). (3) In small amplitude oscillatory shear flow fields, the storage modulus as well as the loss modulus are continuously increased as an increase in angular frequency and an elastic nature is always superior to a viscous behavior over a wide range of angular frequencies. (4) A time-temperature superposition principle can successfully be applicable to vaseline. This finding allows us to estimate the dynamic viscoelastic behavior of vaseline over an extraordinarily extended range (11 decades) of angular frequencies inaccessible from the experimentally measured range (4 decades).

계면활성제 첨가가 커튼 코팅용 도공액의 물성과 커튼 안정성에 미치는 영향 (Effect of surfactant addition on curtain coating color properties and curtain stability)

  • 오규덕;김채훈;윤혜정;이학래
    • 펄프종이기술
    • /
    • 제43권5호
    • /
    • pp.49-54
    • /
    • 2011
  • Curtain coating has been considered as the best coating technology because it is a coating technology that forms contour coating layer with better coverage. To increase the curtain stability surfactants are being used. In this study, the effect of a surfactant on the stability of curtain coating colors was examined by evaluating dynamic surface tension with a bubble surface tensiometer. Di-2-ethylhexyl sodium sulfosuccinate was used as a surfactant since it showed low dynamic surface tension at low surface age. And we evaluated the influence of surfactant on coating color properties including surface tension, viscosity and curtain stability. The surface tension of coating color was decreased when surfactant addition was increased up to 0.5 pph, but it was leveled off at 0.3 pph of surfactant addition. With the increase of surfactant addition rate, viscosity of coating color were increased. Micelles formed by surfactant contributed to the increase of the viscosity. Curtain stability was improved with the addition of surfactant until it reached up to 0.5 pph. Excessive addition of surfactant (> 0.5 pph) didn't improve curtain stability. This was attributed to Marangoni effect(self-healing) and decreasing of curtain thickness.

변성 S-SBR Silica-Silane 고무복합체의 배합조건에 대한 연구 : I. 배합온도의 영향 (Study on Mixing Condition of the Rubber Composite Containing Functionalized S-SBR, Silica and Silane : I. Effect of Mixing Temperature)

  • 장석희;김욱수;강용구;한민현;장상목
    • Elastomers and Composites
    • /
    • 제48권2호
    • /
    • pp.94-102
    • /
    • 2013
  • 실리카와 실란을 포함하는 고무복합체의 최적 배합 조건을 찾기 위하여 다양한 온도에서 배합 후 고무복합체의 특성을 평가하였다. 1차 배합 온도를 105, 120, 130, 140, $160^{\circ}C$로 각각 다르게 배합한 결과 고무복합체의 점도는 $105^{\circ}C$에서는 매우 높았고, $120^{\circ}C$부터 $140^{\circ}C$ 영역에서는 유사하나, $160^{\circ}C$에서는 오히려 증가하였다. 기계적 물성과 동적점탄성 특성을 평가한 결과 $120^{\circ}C$보다 낮은 온도에서는 실리카-실란 반응이 충분치 않음을 알 수 있었고, $160^{\circ}C$의 높은 온도에서는 배합 중 실란커플링제 내에 존재하는 유황에 의하여 가교반응이 진행되는 문제가 있음을 알 수 있었다. 그러나 $120^{\circ}C$에서 $140^{\circ}C$영역에서는 온도가 높을수록 반응이 더 빨리 진행되어 알코올의 제거에는 유리하지만 동적점탄성 특성이나 기계적 성질에 대한 경향성이 분명하게 나타나지 않았다.

고전단점도 측정에 의한 도공액의 패킹 특성 연구 (Studies on the Packing Characteristics of Coating Colors Based on the Rheological Properties at High Shear Rates)

  • 이학래;성용주
    • 펄프종이기술
    • /
    • 제29권2호
    • /
    • pp.7-15
    • /
    • 1997
  • High shear viscosity at several solids levels was measured for a number of pigment slurries and coating colors containing either anionic or amphoteric latex and analyzed according to Mooney and Eiler equations. Maximum packing fraction and intrinsic viscosity were obtained and compared. Eiler equation provides more credible information than Mooney equation on particle packing and intrinsic viscosity. The packing fraction obtained from Eiler equation was slightly greater than that obtained from static FCC measurement indicating the influence of pigment movement under the dynamic condition. Amphoteric latex caused 4-5% increase of maximum packing fraction of a coating color when its pH is lowered from 7 to 6, while anionic latex did not show any significant change in packing characteristics.

  • PDF

젤 모사 추진제의 점도 변화에 따른 분무 분열 및 파장 변화 특성 (Breakup Process and Wave Development Characteristics of Gel Propellant Simulants at Various Gelling Agent Contents)

  • 황태진;이인철;김정훈;김도헌;구자예
    • 한국분무공학회지
    • /
    • 제16권3호
    • /
    • pp.140-145
    • /
    • 2011
  • Gelled propellants are non-Newtonian fluids in which the viscosity is a function of the shear rate, and they have a high dynamic shear viscosity which depends on the amount of gelling agent contents. The present study has focused on the breakup process, wave development of ligament and liquid sheets formed by impinging jets with various gelling agent contents. The breakup process of like-on-like doublet impinging jets are experimentally characterized using non-Newtonian liquids. The spray shape with elliptical pattern is distributed in a perpendicular direction to the momentum vectors of the jets. Gelled propellant simulants with high viscosity jets are more stable and produce less pronounced surface waves than low viscosity jets. Gelled propellant simulants from like-on-like doublet impinging jets have the spray shape of closed rim patterns at low pressure. As the injection pressure increased, rimless patterns which were composed of ligament sheets and small droplets emerged due to the effect of the aerodynamic action.

시간종속적 하중을 받는 축하중을 받을 때의 동특성 - 고체점성 고찰 - (Dynamic Characteristics of a Beam Sujected to an Axial Force and a Force of Time Dependent Frequency - Effect of Solid Viscosity -)

  • 정태진;박영조
    • 대한기계학회논문집
    • /
    • 제10권4호
    • /
    • pp.456-462
    • /
    • 1986
  • 본 논문은 Voigt형의 고체점성을 갖는 단순기지보에 외부기진력이 sin(1/2 at$^{2}$+1/3bt$^{3}$)인 꼴로 작용할 때에 축하중 및 각속도의 변화에 따른 동적 처짐 효과를 고찰하였다.