• 제목/요약/키워드: Dynamic viscosity

검색결과 324건 처리시간 0.048초

승용차량 구동축의 작용력에 따른 진동특성 연구 (A Study on the Characteristics of Vibration Due to the Forces of Drive Shaft)

  • 사종성;강태원
    • 한국생산제조학회지
    • /
    • 제22권4호
    • /
    • pp.708-716
    • /
    • 2013
  • This study aims to understand the applied forces and related vibrational characteristics of a tripod joint (TJ), which is mostly used in front-drive-type middle-sized sedans in South Korea. The plunging force (PF) and generated axial force (GAF) are the most influential quantities related to the vibrational characteristics of a driveshaft. To obtain meaningful data, specially designed tests were performed using MTS test sets. The results of direct measurements reveal that higher PF and GAF values appear to worsen the vibrational characteristics of the vehicle. On the other hand, the measured apparent mass is useful for calculating the applied forces for a short driveshaft that has no dynamic vibration absorber. Among diversely controlled samples, it shows that the viscosity and tight fit are very sensitive to shudder vibrations of the vehicle. Therefore, these are good design factors for quality controls in the production line of constant-velocity joints.

MR 댐퍼를 적용한 6WD 군용차량의 성능평가 (Performance Evaluation of 6WD Military Vehicle Featuring MR Damper)

  • 하성훈;최승복;이은준;강필순
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 추계학술대회논문집
    • /
    • pp.460-465
    • /
    • 2008
  • This paper proposes a new type of MR (magentorheological) fluid based suspension system and applies it to military vehicle for vibration control. The suspension system consists of gas spring and MR damper. The nonlinear behavior of spring characteristics is evaluated with respect to the wheel travel and damping force model due to viscosity and yield stress of MR fluid is derived. Subsequently, a military vehicle of 6WD is adopted for the integration of the MR suspension system and its nonlinear dynamic model is establishes by considering vertical, pitch and roll motion. Then, a sky-hook controller associated with semi-active actuating condition is designed to reduce the vibration. In order to demonstrate the effectiveness of the proposed MR suspension system, computer simulation is undertaken showing vibration control performance such as roll angle and pitch angle evaluated under bump and random road profiles.

  • PDF

밸브 내장형 MR 실린더를 이용한 힘 제어에 관한 연구 (A study on the force control of MR cylinder with built-in valves)

  • 송주영;안경관
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1018-1023
    • /
    • 2005
  • A new MR cylinder with built-in valves using MR fluid (MR valve) is suggested and fabricated for fluid control systems. The MR fluid is a newly developed functional fluid whose obvious viscosity is controlled by the applied magnetic field intensity. The MR cylinder is composed of cylinder with small clearance and piston with electromagnet. The differential pressure is controlled by the applied magnetic field intensity. It has the characteristics of simple, compact and reliable structure. The size of MR cylinder and piston has ${\varphi}30mm{\times}300mm\;and\;{\varphi}28.5mm{\times}120mm$ in face size, respectively and 0.8mm in gap length. Through experiments, it was found that the differential pressure is controlled by the applied magnetic field intensity under little influence of the flow rate, which corresponds to a pressure control valve. The differential pressure of 0.47MPa and contact force of 320N were obtained with the input current of 1.5A. The rising time of force was 1.1s in step response of a manipulator using the MR cylinder. The effectiveness of the MR cylinder was also demonstrated through the force control.

  • PDF

MR 밸브의 전자기적 설계와 성능평가 (Electromagnetic Design and Performance Evaluation of an MR Valve)

  • 김기한;남윤주;박명관
    • 대한기계학회논문집A
    • /
    • 제32권3호
    • /
    • pp.240-249
    • /
    • 2008
  • This paper presents an electromagnetic design method for magneto-rheological (MR) valves. Since the apparent viscosity of MR fluids is adjusted by applying magnetic fields, the MR valves can control high-level fluid power without any mechanical moving parts. In order to improve the performances of the MR valve, it is important that the magnetic field is effectively supplied to the MR fluid. For the purpose, the magnetic circuit composed with the yoke for forming magnetic flux path, the electromagnetic coil and the MR fluid should be well designed. In order to improve the static characteristic of the MR valve, the length of the magnetic flux path is decreased by removing the unnecessary bulk of the yoke. Also, in order to improve its dynamic and hysteretic characteristics, the magnetic reluctance of the magnetic circuit should be increased by minimizing the cross-sectional area of the yoke through which the magnetic flux passes. After two MR valves, one is a conventional type valve and the other is the proposed one, are designed and fabricated, their performances are evaluated experimentally.

후류 영향을 고려한 풍력 발전 단지 성능 예측 연구 (Prediction of Aerodynamic Performance on Wind Turbines in the Far Wake)

  • 손은국;김호건;이승민;이수갑
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.59.2-59.2
    • /
    • 2011
  • Although there are many activities on the construction of wind farm to produce amount of power from the wind, in practice power productions are not as much as its expected capabilities. This is because a lack of both the prediction of wind resources and the aerodynamic analysis on turbines with far wake effects. In far wake region, there are velocity deficits and increases of the turbulence intensity which lead to the power losses of the next turbine and the increases of dynamic loadings which could reduce system's life. The analysis on power losses and the increases of fatigue loadings in the wind farm is needed to prevent these unwanted consequences. Therefore, in this study velocity deficits have been predicted and aerodynamic analysis on turbines in the far wake is carried out from these velocity profiles. Ainslie's eddy viscosity wake model is adopted to determine a wake velocity and aerodynamic analysis on wind turbines is predicted by the numerical methods such as blade element momentum theory(BEMT) and vortex lattice method(VLM). The results show that velocity recovery is more rapid in the wake region with higher turbulence intensity. Since the velocity deficit is larger when the turbine has higher thrust coefficient, there is a huge aerodynamic power loss at the downstream turbine.

  • PDF

열분해 카본블랙을 이용한 아스팔트 바인더의 소성변형 특성 (Permanent Deformation Properties of Asphalt Binder Modified by Pyrolysis Carbon Black of Waste Tires)

  • 이동항;김정구;이관호
    • 한국산학기술학회논문지
    • /
    • 제14권8호
    • /
    • pp.4028-4032
    • /
    • 2013
  • 폐타이어 재활용을 위한 열분해 공법으로 발생하는 열분해 카본블랙의 재활용 방안이 필요하다. 아스팔트 바인더의 소성변형 특성을 개선하기 위하여 페타이어 열분해 공법의 부산물인 카본블랙을 이용하였다. 원아스팔트에 열분해 카본블랙 0%, 5%, 10%, 15% 및 20%를 혼합하였고, 연화점, 침입도시험, 회전점도계 및 동적전단유동기시험을 시행하였다. 열분해 카본블랙을 혼합한 아스팔트 바인더의 연화점은 증가하였고, 인화점은 기준값을 만족하였다. 135도에서의 회전점도값은 증가하였고, 소성변형에 대한 저항성이 개선되는 것으로 나타났다.

GIS 기반의 토석류 시뮬레이션 프로그램 개발 (Development of GIS-based Debris Flow Simulation Program)

  • 위광재;이영균;이동하;서용철
    • 한국방재학회 논문집
    • /
    • 제10권1호
    • /
    • pp.49-55
    • /
    • 2010
  • 본 연구에서는 토석류를 비압축성의 불안정한 유체로 가정하여 토석류의 피해범위를 시뮬레이션하는 GIS 기반의 프로그램의 개발에 대해 다루고 있다. 개발된 Debris Flow Analyzer 프로그램은 입력된 DEM을 완만하게 재정리한 후, 대상지역에 대한 경사, 토석류 이동 방향, 계곡을 추출한 결과와 토석 부피, 물 부피, 속도, 유효 점도, 동적 마찰계수를 취합하여 유한차분법을 적용하여 시간에 따른 토석류 이동 형태를 시뮬레이션하게 된다. 또한 이러한 시뮬레이션 결과를 Google Earth에 표현하여 토석류 재해지도의 활용성을 개선하고자 하였다.

Soft polymeric materials near the transition from liquid to solid state

  • Winter, H.Henning
    • Korea-Australia Rheology Journal
    • /
    • 제11권4호
    • /
    • pp.275-278
    • /
    • 1999
  • Soft polymeric materials have gained importance in recent years, namely in food, pharmaceuticals, photographic media, adhesives, vibration dampeners and superabsorbers (to name a few), but also as inter-mediates for selforganization of molecules or supramolecules into long range order. Many of these soft materials are close to their gel point, i.e. they are liquids just before reaching their gel point or they are solids which have barely passed the gel point. New rheological methods need to be developed for the understanding of these soft materials; the typical liquid properties (viscosity) and typical solid properties (modulus) are not applicable since they diverge at the gel point. This will be discussed in the following. Fortunately, chemical gelation experiments with model polymers has given insight into the behavior at the gel point (Winter and Mours, 1997). This knowledge of the critical gel provides us with a reference state when working with soft polymeric materials. Chemical gels will serve as model materials for the exploration of physical gels. A novel method for detecting the gel point has been proposed: the instant of liquid-to-solid transition(gel point) is marked by the crossover of the normalized dynamic moduli G'/cos($n_c$$\pi$/2) and G"/sin($n_c$$\pi$/2).>/2).

  • PDF

전자선 조사된 에폭시 수지의 절연파괴 특성 (The Characteristics of Dielectric Breakdown for Epoxy Resin irradiated Electron Beam)

  • 홍능표;조돈찬;박흥규;소병문;김왕곤;홍진웅
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 추계학술대회 논문집 학회본부
    • /
    • pp.430-432
    • /
    • 1995
  • In this paper, the electron beam with 1[Mrad], 2[Mrad], 4[Mrad], 8[Mrad] and 24[Mrad] is irradiated for specimen experiments on physical properties which is investigated by FTIR, and dielectric breakdown among the electrical characteristics of specimen are carried out. For the dielectric breakdown experiment, external 60 [Hz] AC voltage is applied to specimen with the rising voltage of 3[kV/cm] until dielectric breakdown occured. We made a breakdown experiment under the temperature condition of 50[$^{\circ}C$], 100[$^{\circ}C$], 150[$^{\circ}C$] in the silicone oils of dynamic viscosity of 100[cSt].

  • PDF

유압관로의 동특성을 이용한 비정상 유량계측 (Unsteady Flow Rate Measurement by Using Hydraulic Pipeline Dynamics)

  • 김도태
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1999년도 추계학술대회 논문집 - 한국공작기계학회
    • /
    • pp.411-416
    • /
    • 1999
  • The measurement of unsteady flow rate is of vital importance to clarify and improve the dynamic characteristics in pipeline, hydraulic components and system. There is also demand for a real time flow sensor of ability to measure unsteady flow rate with high accuracy and fast response to realize feedback control of flow rate in fluid power systems. In this paper, we propose an approach for estimating unsteady flow rate through a pipeline and components under high pressure condition. In the method, unsteady flow rate is estimated by using hydraulic pipeline dynamics and the measured pressure values at two distant points along the pipeline. The distributed parameter model of hydraulic pipeline is applied with consideration of frequency dependent viscosity friction and unsteady velocity distribution at a cross section of a pipeline. By using the self-checking functions of the method, the validity is investigated by comparison with the measured and estimated pressure waveforms at the halfway section on the pipeline. The results show good agreement between the estimated flow rate waveforms and theroetical those under unsteady laminar flow conditions. the method proposed here is useful in estimating unsteady flow rate through an arbitray cross section in hydraulic pipeline and components without installing an instantaneous flowmeter.

  • PDF