• Title/Summary/Keyword: Dynamic tuning

Search Result 290, Processing Time 0.04 seconds

Tuning-free Anti-windup Strategy for High Performance Induction Machine Drives (고성능 유도전동기 구동을 위한 자동 튜닝 Anti-windup 기법)

  • Seok Jul-Ki;Lee Dong-Choon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.1
    • /
    • pp.29-37
    • /
    • 2005
  • This paper presents a tuning-free conditional integration anti-windup strategy for induction machine with Proportional-Integral(PI) type speed controller. The on/off condition of integral action is determined by the frequency domain analysis of machine torque command without a prior knowledge of set-point changes. There are no tuning parameters to be selected by users for anti-windup scheme. In addition, the dynamic performance of the proposed scheme assures a desired tracking response curve with minimal oscillation and settling time even in the change of operating conditions. This algorithm is useful in many high performance induction machine applications not to allow the oscillation and overshoot of speed/torque responses. The main idea can be extended to general applications such as chemical processes and industrial robots.

Veering Phenomena and Dynamic Characteristics in Lateral Micro-Gyroscope (수평형 마이크로 자이로스코프의 비어링 현상 및 동특성)

  • 정호섭;박규연
    • Journal of KSNVE
    • /
    • v.11 no.1
    • /
    • pp.132-140
    • /
    • 2001
  • The vibratory gyroscope can effectively measure the angular velocity as the oscillating and position-sensing mode are exactly tuned. The veering Phenomenon impedes the exact tuning, which is caused by the mode coupling of two modes. In this paper, the gyroscope's structure with two frames is introduced to minimize the veering phenomenon that destabilizes the tuning process of oscillating and position-sensing mode. Experimental results show that the Proposed structure can achieve the mode intersection without veering phenomenon.

  • PDF

Design of Mobile Robot Auto-Tuning Controller Using Nueal Networks (신경망을 이용한 이동로봇의 자기동조 제어기 설계)

  • Kim, Dong-Wook;Kwak, Il-Doo;Lee, Yang-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2501-2503
    • /
    • 2004
  • In this paper, we propose an auto-tuning control algorithm for a mobile robot. This controller consists of a three layer neural networks and a PID controller. In order to compensate for uncertainties from unknown dynamics and ignored dynamic effects such as slip conditions, neural network based position schemes are proposed. The results of simulations show the validity of proposed method. This controller learns quickly the model and has good position control performance.

  • PDF

Pole placement self-tuning control of robot manipulators (극점 배치 자기 동조에 의한 로보트 매니퓰레이터 제어)

  • 이종용;양태규;이상효
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.32-35
    • /
    • 1987
  • An adaptive control scheme has been recognized as an effective approach for a robot manipulator to track a desired trajectory in spite of the presence of nonlinearties and parameter uncertainties in robot dynamic models. In this paper, an adaptive control scheme for a robot manipulator is proposed to design the self-tuning controller which combines the pole placement with the extended linearized perturbation model. And this control scheme has two components: a feadforward control and a feedback compensation control. Based on this, the controller is demonstrated by the simulation about position control of a three-link manipulator with payload and parameter uncertainty.

  • PDF

Adaptive Pole-Placement and Self-Tuning Control for a Robotic Manipulator (적응 극점 배치 및 자기동조 제어 방법에 의한 로보트 매니퓰레이터 제어)

  • 이상효;양태규
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.9
    • /
    • pp.655-662
    • /
    • 1988
  • An adaptive control scheme has been recognized as an effective approach for a robot manipulator to track a deired trajectory in spite of the presence of nonlinearies and parameter uncertainties in robot dynamic models. In this paper, an adaptive control scheme for a robot manipulator is proposed to design the self-tuning controller which controls the extended linearized perturbaton model via the pole placement, and this control. The feasibility of the controller is demonstrated by the simulation about position control of a three-link manipulator with payload and parameter uncertainty.

  • PDF

Gain Tuning of PID Controllers with the Dynamic Encoding Algorithm for Searches(DEAS) Based on the Constrained Optimization Technique

  • Kim, Jong-Wook;Kim, Sang-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.13-18
    • /
    • 2003
  • This paper proposes a design method of PID controllers in the framework of a constrained optimization problem. Owing to the popularity for the controller's simplicity and robustness, a great deal of literature concerning PID control design has been published, which can be classified into frequency-based and time-based approaches. However, both approaches have to be considered together for a designed PID control to work well with a guaranteed closed-loop stability. For this purpose, a penalty function is formulated to satisfy both frequency- and time-domain specifications, and is minimized by a recet nonlinear optimization algorithm to attain optimal PID control gains. The proposed method is compared with Wang's and Ho's methods on a suite of example systems. Simulation results show that the PID control tuned by the proposed method improves time-domain performance without deteriorating closed-loop stability.

  • PDF

Intelligent Tuning of a PID Controller Using Immune Algorithm

  • Kim, Dong-Hwa;Kaoru Hirota
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.91.5-91
    • /
    • 2001
  • This paper suggests that the immune algorithm can effectively be used in tuning of a PID controller. The artificial immune network always has a new parallel decentralized processing mechanism for various situations, since antibodies communicate to each other among different species of antibodies/B-cells through the stimulation and suppression chains among antibodies that form a large-scaled network. In addition to that, the structure of the network is not fixed, but varies continuously. That is, the artificial immune network flexibly self-organizes accord Eng to dynamic changes of external environment (meta-dynamics function). However, up to the present time, models based on the conventional crisp approach have been used to describe dynamic model relationship between antibody and antigen. Therefore, there are some problems ...

  • PDF

Advanced Process Control of the Critical Dimension in Photolithography

  • Wu, Chien-Feng;Hung, Chih-Ming;Chen, Juhn-Horng;Lee, An-Chen
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.1
    • /
    • pp.12-18
    • /
    • 2008
  • This paper describes two run-to-run controllers, a nonlinear multiple exponential-weight moving-average (NMEWMA) controller and a dynamic model-tuning minimum-variance (DMTMV) controller, for photolithography processes. The relationships between the input recipes (exposure dose and focus) and output variables (critical dimensions) were formed using an experimental design method, and the photolithography process model was built using a multiple regression analysis. Both the NMEWMA and DMTMV controllers could update the process model and obtain the optimal recipes for the next run. Quantified improvements were obtained from simulations and real photolithography processes.

AUTOMATIC TUNING OF FUZZY OPTIMAL CONTROL SYSTEM

  • Hoon-Kang;Lee, Hong-Gi-;Kim, Yong-Ho-;Jeon, Hong-Tae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1195-1198
    • /
    • 1993
  • We investigate a systematic design procedure of automated rule generation of fuzzy logic based controller for uncertain dynamic systems such as an engine dynamic model.“Automated Tuning”means autonomous clustering or collection of such meaningful transitional relations in the state-space. Optimal control strategies are included in the design procedures, such as minimum squared error, minimum time, minimum energy or combined performance criteria. Fuzzy feedback control systems designed by the cell-state transition method have the properties of closed-loop stability, robustness under parameter variabtions, and a certain degree of optimality. Most of all, the main advantage of the proposed approach is that reliability can be potentially increased even if a large grain of uncertainty is involved within the control system under consideration. A numerical example is shown in which we apply our strategic fuzzy controller design to a highly nonlinear model of engine idle speed contr l.

  • PDF

Control of DC Servo Motor using PID Controller Self-Tuning (PID제어기의 자기동조를 이용한 직류 서보전동기의 위치제어)

  • Kim, Gwon-Sub;Lee, Oh-Keol;Kim, Sang-Hyo;Ko, Tai-Eun
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1113-1115
    • /
    • 1996
  • The servo system requires faster and more accurate dynamic responses. A new technique for the position control of DC servo motors is presented in this paper. The proposed technique employs a Self Tuning Regulator Proportional Integral Derivative(STR PID) position control systems in order to improve the dynamic performance of a DC servo motor. Recursive -least -squares (RLS) method is used in order to estimate the STR PID coefficients, $K_P$, $K_I$, and $K_D$. In order to consider dynamics such as voltage, angular velocity, and rotor angle, the above method was applied position control system.

  • PDF