• Title/Summary/Keyword: Dynamic time warping algorithm

Search Result 79, Processing Time 0.034 seconds

Recurrent Neural Network Modeling of Etch Tool Data: a Preliminary for Fault Inference via Bayesian Networks

  • Nawaz, Javeria;Arshad, Muhammad Zeeshan;Park, Jin-Su;Shin, Sung-Won;Hong, Sang-Jeen
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.239-240
    • /
    • 2012
  • With advancements in semiconductor device technologies, manufacturing processes are getting more complex and it became more difficult to maintain tighter process control. As the number of processing step increased for fabricating complex chip structure, potential fault inducing factors are prevail and their allowable margins are continuously reduced. Therefore, one of the key to success in semiconductor manufacturing is highly accurate and fast fault detection and classification at each stage to reduce any undesired variation and identify the cause of the fault. Sensors in the equipment are used to monitor the state of the process. The idea is that whenever there is a fault in the process, it appears as some variation in the output from any of the sensors monitoring the process. These sensors may refer to information about pressure, RF power or gas flow and etc. in the equipment. By relating the data from these sensors to the process condition, any abnormality in the process can be identified, but it still holds some degree of certainty. Our hypothesis in this research is to capture the features of equipment condition data from healthy process library. We can use the health data as a reference for upcoming processes and this is made possible by mathematically modeling of the acquired data. In this work we demonstrate the use of recurrent neural network (RNN) has been used. RNN is a dynamic neural network that makes the output as a function of previous inputs. In our case we have etch equipment tool set data, consisting of 22 parameters and 9 runs. This data was first synchronized using the Dynamic Time Warping (DTW) algorithm. The synchronized data from the sensors in the form of time series is then provided to RNN which trains and restructures itself according to the input and then predicts a value, one step ahead in time, which depends on the past values of data. Eight runs of process data were used to train the network, while in order to check the performance of the network, one run was used as a test input. Next, a mean squared error based probability generating function was used to assign probability of fault in each parameter by comparing the predicted and actual values of the data. In the future we will make use of the Bayesian Networks to classify the detected faults. Bayesian Networks use directed acyclic graphs that relate different parameters through their conditional dependencies in order to find inference among them. The relationships between parameters from the data will be used to generate the structure of Bayesian Network and then posterior probability of different faults will be calculated using inference algorithms.

  • PDF

A Novel Query-by-Singing/Humming Method by Estimating Matching Positions Based on Multi-layered Perceptron

  • Pham, Tuyen Danh;Nam, Gi Pyo;Shin, Kwang Yong;Park, Kang Ryoung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.7
    • /
    • pp.1657-1670
    • /
    • 2013
  • The increase in the number of music files in smart phone and MP3 player makes it difficult to find the music files which people want. So, Query-by-Singing/Humming (QbSH) systems have been developed to retrieve music from a user's humming or singing without having to know detailed information about the title or singer of song. Most previous researches on QbSH have been conducted using musical instrument digital interface (MIDI) files as reference songs. However, the production of MIDI files is a time-consuming process. In addition, more and more music files are newly published with the development of music market. Consequently, the method of using the more common MPEG-1 audio layer 3 (MP3) files for reference songs is considered as an alternative. However, there is little previous research on QbSH with MP3 files because an MP3 file has a different waveform due to background music and multiple (polyphonic) melodies compared to the humming/singing query. To overcome these problems, we propose a new QbSH method using MP3 files on mobile device. This research is novel in four ways. First, this is the first research on QbSH using MP3 files as reference songs. Second, the start and end positions on the MP3 file to be matched are estimated by using multi-layered perceptron (MLP) prior to performing the matching with humming/singing query file. Third, for more accurate results, four MLPs are used, which produce the start and end positions for dynamic time warping (DTW) matching algorithm, and those for chroma-based DTW algorithm, respectively. Fourth, two matching scores by the DTW and chroma-based DTW algorithms are combined by using PRODUCT rule, through which a higher matching accuracy is obtained. Experimental results with AFA MP3 database show that the accuracy (Top 1 accuracy of 98%, with an MRR of 0.989) of the proposed method is much higher than that of other methods. We also showed the effectiveness of the proposed system on consumer mobile device.

Non-Contact Gesture Recognition Algorithm for Smart TV Using Electric Field Disturbance (전기장 왜란을 이용한 비접촉 스마트 TV 제스처 인식 알고리즘)

  • Jo, Jung-Jae;Kim, Young-Chul
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.2
    • /
    • pp.124-131
    • /
    • 2014
  • In this paper, we propose the non-contact gesture recognition algorithm using 4- channel electrometer sensor array. ELF(Extremely Low Frequency) EMI and PLN are minimized because ambient electromagnetic noise around sensors has a significant impact on entire data in indoor environments. In this study, we transform AC-type data into DC-type data by applying a 10Hz LPF as well as a maximum buffer value extracting algorithm considering H/W sampling rate. In addition, we minimize the noise with the Kalman filter and extract 2-dimensional movement information by taking difference value between two cross-diagonal deployed sensors. We implemented the DTW gesture recognition algorithm using extracted data and the time delayed information of peak values. Our experiment results show that average correct classification rate is over 95% on five-gesture scenario.

An On-Line Signature Verification Algorithm Based On Neural Network (신경망 기반의 온라인 서명 검증 알고리듬)

  • Lee, Wan-Suck;Kim, Seong-Hoon
    • Journal of Intelligence and Information Systems
    • /
    • v.7 no.2
    • /
    • pp.143-151
    • /
    • 2001
  • This paper investigates the development of a neural network based system for automated signature authentication that relies on an autoregressive characterization for the segments of a signature. The primary contributions of this work are tow-fold: a) the development of the neural network architecture and the modalities of training it, b) adaptation of the dynamic time warping algorithm to fomulate a new method for enabling consistent segmentation of multiple signatures from the same writer. The performance of the signature verification system has been tested using a sizable database that includes a comprehensive set of simulated and realistic forgeries. False Acceptance and False Rejection error rates of 0.78% and 1.6% respectively were obtained in tests conducted using 1920 skilled forgeries.

  • PDF

Implementation and Evaluation of Abnormal ECG Detection Algorithm Using DTW Minimum Accumulation Distance (DTW 최소누적거리를 이용한 심전도 이상 검출 알고리즘 구현 및 평가)

  • Noh, Yun-Hong;Lee, Young-Dong;Jeong, Do-Un
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.39-45
    • /
    • 2012
  • Recently the convergence of healthcare technology is used for daily life healthcare monitoring. Cardiac arrhythmia is presented by the state of the heart irregularity. Abnormal heart's electrical signal pathway or heart's tissue disorder could be the cause of cardiac arrhythmia. Fatal arrhythmia could put patient's life at risk. Therefore arrhythmia detection is very important. Previous studies on the detection of arrhythmia in various ECG analysis and classification methods had been carried out. In this paper, an ECG signal processing techniques to detect abnormal ECG based on DTW minimum accumulation distance through the template matching for normalized data and variable threshold method for ECG R-peak detection. Signal processing techniques able to determine the occurrence of normal ECG and abnormal ECG. Abnormal ECG detection algorithm using DTW minimum accumulation distance method is performed using MITBIH database for performance evaluation. Experiment result shows the average percentage accuracy of using the propose method for Rpeak detection is 99.63 % and abnormal detection is 99.60 %.

A Study on Design and Implementation of Speech Recognition System Using ART2 Algorithm

  • Kim, Joeng Hoon;Kim, Dong Han;Jang, Won Il;Lee, Sang Bae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.2
    • /
    • pp.149-154
    • /
    • 2004
  • In this research, we selected the speech recognition to implement the electric wheelchair system as a method to control it by only using the speech and used DTW (Dynamic Time Warping), which is speaker-dependent and has a relatively high recognition rate among the speech recognitions. However, it has to have small memory and fast process speed performance under consideration of real-time. Thus, we introduced VQ (Vector Quantization) which is widely used as a compression algorithm of speaker-independent recognition, to secure fast recognition and small memory. However, we found that the recognition rate decreased after using VQ. To improve the recognition rate, we applied ART2 (Adaptive Reason Theory 2) algorithm as a post-process algorithm to obtain about 5% recognition rate improvement. To utilize ART2, we have to apply an error range. In case that the subtraction of the first distance from the second distance for each distance obtained to apply DTW is 20 or more, the error range is applied. Likewise, ART2 was applied and we could obtain fast process and high recognition rate. Moreover, since this system is a moving object, the system should be implemented as an embedded one. Thus, we selected TMS320C32 chip, which can process significantly many calculations relatively fast, to implement the embedded system. Considering that the memory is speech, we used 128kbyte-RAM and 64kbyte ROM to save large amount of data. In case of speech input, we used 16-bit stereo audio codec, securing relatively accurate data through high resolution capacity.

Text-dependent Speaker Recognition System Using DTW & VQ (VQ와 DTW를 이용한 문장 의존형 화자인식 시스템)

  • Jung JongSoon;Oh SeYoung;Bae MyungJin
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.97-103
    • /
    • 2001
  • The speaker recognition method using DTW algorithm has the problem that is reducing the performance of the speaker recognition system as the time variation. So there are many proposed algorithms to solve these problems. This paper proposes the new method If make the reference pattern that is acceptable to intra-speaker variation by reference pattern normalization. And to avoid reducing performance of speaker recognition system, we use the modified reference pattern to recognize the system user. The used methods in this paper are VQ and DTW. As the result of simulation we can obtain the $97.5\%$ of recognition accuracy rate.

  • PDF

Correlation Analysis of Event Logs for System Fault Detection (시스템 결함 분석을 위한 이벤트 로그 연관성에 관한 연구)

  • Park, Ju-Won;Kim, Eunhye;Yeom, Jaekeun;Kim, Sungho
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.2
    • /
    • pp.129-137
    • /
    • 2016
  • To identify the cause of the error and maintain the health of system, an administrator usually analyzes event log data since it contains useful information to infer the cause of the error. However, because today's systems are huge and complex, it is almost impossible for administrators to manually analyze event log files to identify the cause of an error. In particular, as OpenStack, which is being widely used as cloud management system, operates with various service modules being linked to multiple servers, it is hard to access each node and analyze event log messages for each service module in the case of an error. For this, in this paper, we propose a novel message-based log analysis method that enables the administrator to find the cause of an error quickly. Specifically, the proposed method 1) consolidates event log data generated from system level and application service level, 2) clusters the consolidated data based on messages, and 3) analyzes interrelations among message groups in order to promptly identify the cause of a system error. This study has great significance in the following three aspects. First, the root cause of the error can be identified by collecting event logs of both system level and application service level and analyzing interrelations among the logs. Second, administrators do not need to classify messages for training since unsupervised learning of event log messages is applied. Third, using Dynamic Time Warping, an algorithm for measuring similarity of dynamic patterns over time increases accuracy of analysis on patterns generated from distributed system in which time synchronization is not exactly consistent.

Development of a Diagnosis Algorithm of Influent Loading Levels Using Pattern Matching Method in Sequencing Batch Reactor (SBR) (연속회분식반응기에서 패턴매칭방법을 이용한 유입수 부하수준 진단 알고리즘 개발)

  • Kim, Ye-Jin;Ahn, Yu-Ga;Kim, Hyo-Su;Shin, Jung-Phil;Kim, Chang-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.2
    • /
    • pp.102-108
    • /
    • 2009
  • DO, ORP and pH values measured during SBR operation can provide information about removal reaction of organic contaminants and nutrient materials in the reactor. It is already generalized control strategy to control reaction phase time using their special patterns indicating the end of the removal reactions. However, those informations are limited to point out the end time of oxidative reaction in the aerobic phase or reductive reaction in the anoxic phase without giving quantitative value of influent loading level. In this research, a diagnosis algorithm which can estimate the loading level of carbon and ammonia as high, medium and low was developed using the basic measurements like DO, ORP, and pH. It will be possible to know the level of influent loading rate from those online measurements without experimental analysis.

Analysis of Personal Gait Characteristics According to Legs Imbalance Gait (하지 보행 불균형 상태에 따른 개인별 보행 특성 분석)

  • Cho, Woo-Hyeong;Kim, Yeon-Wook;Kwon, Jang-Woo;Lee, Sangmin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.5
    • /
    • pp.109-119
    • /
    • 2017
  • In the present study, to determine walking imbalance using the walking analysis method, where limitations in the existing walking analysis have been minimized, we propose a new walking analysis method that adopts the following: self-developed equipment to measure the angles of left-right hip joints and knee joints; a determination system using symmetry index (SI); and dynamic time warping (DTW) similarity analysis algorithm to analyze individual walking styles. Normal and imbalanced walking tests were conducted for 12 subjects without walking disorder. From the SI calculation to determine imbalanced walking, both the normal and imbalanced walking styles can be determined using the angle measurements of the left-right hip joints and knee joints. In the analysis of the individual walking styles, the similarities at the center of the lower back, left-right thighs, and dorsum of the feet of the 12 subjects in both normal and imbalanced walking cases were compared. From the similarity analysis of the measured values during the normal and imbalanced walking tests, I determined that the walking pattern does not maintain the same stance when the body parts move during walking.