• Title/Summary/Keyword: Dynamic stress condition

Search Result 262, Processing Time 0.038 seconds

Preshear Influence for Liquefaction Resistance in Sand (사질지반에서 액상화 저항에 대한 선행전단응력의 영향)

  • 윤여원;김한범;김방식
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.315-322
    • /
    • 2003
  • Cyclic simple shear tests were performed to find out the effect of preshear on dynamic strength of the sandy soil. Tests were performed for the specimens with 40% and 60% of relative density, under three different effective vertical stress of 50, 100 and 200kPa. For 50 and 100kPa, preshear ratios 0.00, 0.08, 0.12 and 0.16 were given, respectively, For low and high relative densities, two different results are shown in dynamic tests. Under the dense conditions, the maximum shear stress ratio($\tau$$\_$cyc//$\sigma$$\_$vo/) and the cyclic shear stress ratio($\tau$$\_$cyc//$\sigma$$\_$vo/) causing a certain shear strain increase with augmenting preshear ratio(${\alpha}$). However, the maximum shear stress ratio and the cyclic shear stress ratio increase or decrease with increasing preshear ratio under the loose conditions. Correction factor(K$\_$${\alpha}$/) for preshear increases at an early stage and then decreases with increasing preshear ratio at loose condition and increase with increasing preshear ratio at dense condition. Correction factor (K$\_$${\alpha}$,Max/) for preshear increases with the increasing preshear ratio irrespective of relative density, and the value of has same behavior as K$\_$${\alpha}$/.

  • PDF

Effect of Rock Discontinuities on Dynamic Shear Stress Wave (암반 불연속면이 동적 전단응력파에 미치는 영향)

  • Son, Moorak
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.12
    • /
    • pp.25-32
    • /
    • 2018
  • This paper investigates the effect of rock discontinuities on a shear stress wave that is induced by earthquake or blasting and provides the result of numerical parametric studies. The numerical tests of different conditions of rock and discontinuity have been carried out after confirming that the numerical approach is valid throughout a verification analysis from which the test results were compared with a theoretical solution. In-situ stress condition was considered as a rock condition and internal friction angle and cohesive value, which are the shear strength parameters, were considered as discontinuities condition. The joint inclination angle was also taken into account as a parameter. With the various conditions of different parameters, the test results showed that a shear stress wave propagating through a mass is highly influenced by the shear strength of discontinuities and the condition of joint inclination angle as well as in-situ stress. The study results indicate that when earthquake or blasting-induced dynamic loading propagates through a jointed rock mass or a stratified soil ground the effect of in-situ stress and discontinuities including a stratum boundary should be taken into account when evaluating the dynamic effect on nearby facilities and structures.

In Situ Mechanical Response of Bovine Humeral Head Articular Cartilage in a Physiological Loading Environment (생리학적인 하중 조건에서 소 상완골 연골의 기계적 특성)

  • Park, Seong-Hun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.1
    • /
    • pp.145-150
    • /
    • 2008
  • One of the unresolved questions in articular cartilage biomechanics is the magnitude of the dynamic modulus and tissue compressive strains under physiological loading conditions. The objective of this study was to characterize the dynamic modulus and compressive strain magnitudes of bovine articular cartilage at physiological compressive stress level and loading frequency. Four bovine calf shoulder joints (ages 2-4 months) were loaded in Instron testing system under load control, with a load amplitude up to 800 N and loading frequency of 1 Hz, resulting in peak engineering stress amplitude of ${\sim}5.8\;MPa$. The corresponding peak deformation of the articular layer reached ${\sim}27%$ of its thickness. The effective dynamic modulus determined from the slope of stress versus strain curve was ${\sim}23\;MPa$, and the phase angle difference between the applied stress and measured strain which is equivalent to the area of the hystresis loop in the stress-strain response was ${\sim}8.3^{\circ}$. These results are representative of the functional properties of articular cartilage in a physiological loading environment. This study provides novel experimental findings on the physiological strain magnitudes and dynamic modulus achieved in intact articular layers under cyclical loading conditions.

Vibration Characteristic Analysis of 500MW Steam Turbine Blade-Disks (500MW급 증기터빈 블레이드-디스크계의 진동특성 분석)

  • Choi, Hong-Il;Bae, Yong-Chae;Kim, Hee-Soo;Lee, Wook-Ryun;Lee, Doo-Young
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.253-253
    • /
    • 2008
  • The main purpose of this study is to identify the vibrational characteristics for the LP blades of Korean standard fossil power plants. Modal tests for the 6 stage blade with boundary condition in which the root of blades are constrained with the disk were conducted, and FE analysis was also did with the same boundary condition. The steady-stress and modal analyses for the coupled bladed-disk system of LP turbine stages were completed. The dynamic analysis and fatigue analysis were followed to diagnose the integrity of LP turbine blades.

  • PDF

Control of Processing Conditions for Improvement of vibration Characteristics of Injection Molded Disk (사출성형 디스크의 진동특성 향상을 위한 공정조건 제어)

  • Sin Hyo-Chol;Nam Ji-Geun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.6 s.249
    • /
    • pp.615-621
    • /
    • 2006
  • Increased application of optical disks requires more improved dynamic stability of rotating disks. In this study, a new concept of controlling the processing conditions of injection molded disks was developed to improve vibration characteristics. The critical speed, which shows stiffness and dynamic stability of disk, is affected by the residual stress distribution; this varies as functions of distance from the gate and processing condition. The critical speed of disk was calculated with the initial stress taken into consideration, which was determined from injection molding simulation. Choosing melt temperature, mold temperature, filling speed and packing pressure as design parameters, critical speed is maximized with the method of response surface. It is shown that the stability of injection molded disk has been improved for the new condition obtained as a result of the study proposed.

Dynamic Mixed Mode Crack Propagation Behavior of Structural Bonded Joints

  • Lee, Ouk-Sub;Park, Jae-Chul;Kim, Gyu-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.7
    • /
    • pp.752-763
    • /
    • 2000
  • The stress field around the dynamically propagating interface crack tip under a remote mixed mode loading condition has been studied with the aid of dynamic photoelastic method. The variation of stress field around the dynamic interface crack tip is photographed by using the Cranz-Shardin type camera having $10^6$ fps rate. The dynamically propagating crack velocities and the shapes of isochromatic fringe loops are characterized for varying mixed load conditions in double cantilever beam (DCB) specimens. The dynamic interface crack tip complex stress intensity factors, $K_1\;and\;K_2$, determined by a hybrid-experimental method are found to increase as the load mixture ratio of y/x (vertical/horizontal) values. Furthermore, it is found that the dynamically propagating interface crack velocities are highly dependent upon the varying mixed mode loading conditions and that the velocities are significantly small compared to those under the mode I impact loading conditions obtained by Shukla (Singh & Shukla, 1996a, b) and Rosakis (Rosakis et al., 1998) in the USA.

  • PDF

Determination of Dynamic Tensile Behavior of Al5052-H32 using SHPB Technique (SHPB 테크닉을 이용한 Al5052-H32의 동적 인장 거동 규명)

  • 이억섭;김면수;백준호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.790-794
    • /
    • 1997
  • Mechanical properties of the materials used for transportations and industrial machinery under high strain rate loading conditions such as seismic loading are required to provide appropriate safety assessment to those mechanical structures. The Split Hopkinson Pressure Bar(SHPB) technique with a special experimental behavior under high strain rate loading condition In this paper, dynamic deformation behaviors of A15052-H32 under high strain rate tensile loading are determined using the SHPB technique.

  • PDF

A Study on Dynamic Analysis and Fatigue Life of the Belt in the OHT Vehicle (OHT 차량 벨트 동특성 및 피로 수명에 관한 연구)

  • Jung Il-Ho;Kim Chang-Su;Cho Dong-Hyeob;Park Joong-Kyung;Park Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.8 s.239
    • /
    • pp.1085-1092
    • /
    • 2005
  • The OHT(Over Head Transportation) Vehicle transports heavy products quickly and repeatedly at the industrial workplace. The belt in the OHT vehicle is used to support the weight of the OHT Cage. The fatigue of the belt is caused by the dynamic load during the operation time. Since the fatigue fracture of the belt affects the safety at the workplace, the correct prediction of the dynamic load is necessary to calculate the fatigue life of the belt on the design step. In this paper a computer aided analysis method is proposed for the belt in the early design stage using dynamic analysis, stress analysis, belt tensile test, belt fatigue test and fatigue lift prediction method. From the dynamic load time histories and the stress of the belt FE model, a dynamic stress time history is produced. Using linear damage law and cycle counting method, fatigue life cycle is calculated. The method developed in this paper is used to reduce the time and cost for designing the OHT belt in different environment and condition.

Seismic Qualification Analysis of a Vertical-Axis Wind Turbine (소형 수직축 풍력발전기의 내진검증 해석)

  • Choi, Young-Hyu;Hong, Min-Gi
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.3
    • /
    • pp.21-27
    • /
    • 2016
  • The static and dynamic structural integrity qualification was performed through the seismic analysis of a small-size Savonius-type vertical wind turbine at dead weight plus wind load and seismic loads. The ANSYS finite element program was used to develop the FEM model of the wind turbine and to accomplish static, modal, and dynamic frequency response analyses. The stress of the wind turbine structure for each wind load and dead weight was calculated and combined by taking the square root of the sum of the squares (SRSS) to obtain static stresses. Seismic response spectrum analysis was also carried out in the horizontal (X and Y) and vertical (Z) directions to determine the response stress distribution for the required response spectrum (RRS) at safe-shutdown earthquake with a 5% damping (SSE-5%) condition. The stress resulting from the seismic analysis in each of the three directions was combined with the SRSS to yield dynamic stresses. These static and dynamic stresses were summed by using the same SRSS. Finally, this total stress was compared with the allowable stress design, which was calculated based on the requirements of the KBC 2009, KS C IEC 61400-1, and KS C IEC 61400-2 codes.

Dynamic simulation of squeezing flow of ER fluids using parallel processing

  • Kim, Do-Hoon;Chu, Sang-Hyon;Ahn, Kyung-Hyun;Lee, Seung-Jong
    • Korea-Australia Rheology Journal
    • /
    • v.11 no.3
    • /
    • pp.233-240
    • /
    • 1999
  • In order to understand the flow behavior of Electrorheological (ER) fluid, dynamic simulation has been intensively performed for the last decade. When the shear flow is applied, it is easy to carry out the simulation with relatively small number of particles because of the periodic boundary condition. For the squeezing flow, however, it is not easy to apply the periodic boundary condition, and the number of particles needs to be increased to simulate the ER system more realistically. For this reason, the simulation of ER fluid under squeezing flow has been mostly performed with some representative chains or with the approximation that severely restricts the flow geometry to reduce the computational load. In this study, Message Passing Interface (MPI), which is one of the most widely-used parallel processing techniques, has been employed in a dynamic simulation of ER fluid under squeezing flow. As the number of particles used in the simulation could be increased significantly, full domain between the electrodes has been covered. The numerical treatment or the approximation used to reduce the computational load has been evaluated for its validity, and was found to be quite effective. As the number of particles is increased, the fluctuation of the normal stress becomes diminished and the prediction in general was found to be qualitatively In good agreement with the experimental results.

  • PDF