• Title/Summary/Keyword: Dynamic stress

Search Result 1,980, Processing Time 0.026 seconds

Development of Dynamic Photoelastic Experimental Hybrid Method for Propagating Cracks in Orthotropic Material (직교이방성체내의 진전 균열에 대한 동적 광탄성 실험 Hybrid 법 개발)

  • Shin, Dong-Chul;Hawong, Jai-Sug;Sung, Jong-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.8
    • /
    • pp.1273-1280
    • /
    • 2003
  • In this paper, transparent dynamic photoelastic experimental hybrid method for propagating cracks in orthotropic material was developed. Using transparent dynamic photoelastic experimental hybrid method, we can obtain stress intensity factor and separate the stress components from only isochromatic fringe patterns without using isoclinics. When crack is propagated with constant velocity, the contours of stress components in the vicinity of crack tip in orthotropic material are similar to those of isotropic material or orthotropic material with stationary crack under the static load. Dynamic stress intensity factors are decreased as crack growths. It was certified that the dynamic photoelastic experimental hybrid method was very useful for the analysis of the dynamic fracture mechanics.

Dynamic Interface Crack Propagating Along a Line Between Two Holes

  • Lee, Ouk-Sub;Park, Jae-Chul;Yin, Hai-Long;Byun, Kwi-Hwan
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.172-179
    • /
    • 2001
  • The effects of the interface and two holes located near the crack path in the hybrid specimen on the dynamic crack propagation behavior have been investigated using dynamic photoelasticity with the aid of Cranz-Shardin type high speed camera system. The dynamic stress field around the dynamically propagating interface crack tip in the three point bending specimens under a dynamic load applied by a hammer dropped from 0.6m high without initial velocity are recorded. The complex stress intensity factors for the dynamically propagating interface crack are extracted by using a overdeterministic least square method. Theoretical dynamic interface isochromatic fringe loops generated by using the numerically determined complex stress intensity factors are compared with the experimental results. Furthermore, the influence of the hole to the dynamic interface crack velocities has been investigated experimentally.

  • PDF

A Study on the Development of the Dynamic Photoelastic Hybrid Method for Two Dissimilar Isotropic Bi-Materials (두 상이한 등방성 이종재료용 동적 광탄성 하이브리드법 개발에 관한 연구)

  • Sin, Dong-Cheol;Hwang, Jae-Seok;Gwon, O-Seong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.3
    • /
    • pp.434-442
    • /
    • 2001
  • When the interfacial crack of two dissimilar isotropic bi-materials is propagated with constant velocity along the interface, stress and displacement components are derived in this research. The dynamic photoelastic experimental hybrid method for bimaterial is introduced. It is assured that stress components and dynamic photoelastic hybrid method developed in this research are valid. Separating method of stress component is introduced from only dynamic photoelastic fringe patterns. Crack propagating velocity of interfacial crack is 80∼85% (in case of aluminum, 24.3∼25.9%) of Rayleigh wave velocity of epoxy resin. The near-field stress components of crack-tip are similar with those of pure isotropic material under static or dynamic loading, but very near-field stress components of crack-tip are different from those.

Effect of Notch Geometries on Dynamic Stress Concentration Factor (노치 선단(균열 주위)의 기하학적 형상이 동적 응력집중계수(동적균열전파)에 미치는 영향)

  • O.S. Lee;H.S. Jeon;K.H. Byun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.4
    • /
    • pp.46-54
    • /
    • 1998
  • In this paper, the erect of notch geometries on dynamic stress concentration was investigated by using the dynamic photoelasticity and the drop weight loading system Dynamic stress fields arisen by elastic wave through the loading system around various types of notch geometries were captured by using $10^6/sec$ frame rate Cranz-Shardin camera system with 12 photographic frames. We found that dynamic stress concentrations around the notch tip and comer were highly dependent on the change in notch geometries. The elders of dynamic stress singularity ware determined with respect to varying geometries of notches and we explained dynamic stress concentration in terms of the orders of dynamic stress singularity.

  • PDF

Dynamic Stress Intensity Factor $K_{III}$ of Crack Propagating with Constant Velocity in Orthotropic Disk Plate Subjected to Longitudinal Shear Stress (길이방향의 전단응력을 받은 직교이방성 원판에 내재된 외부균열의 등속전파 응력확대계수 $K_{III}$)

  • 최상인
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.2
    • /
    • pp.69-79
    • /
    • 1996
  • Dynamic stress intensity factors are derives when the crack is propagating with constant velocity under longitudinal shear stress in orthotropic disk plate. General stress fields of crack tip propagating with constant velocity and least square method are used to obtain the dynamic stress intensity factor. The dynamic stress intensity factors of GLV/GTV=1(=isotropic material or transversely isotropic material) which is obtained in out study nearly coincides with Chiang's results when mode Ⅲ stress is applied to boundary of isotropic disk. The D.S.I.F. of mode Ⅲ stress is greater when α(=angle of crack propagation direction with fiber direction) is 90° than that when α is 0°. In case of a/D(a:crack length, D:disk diameter)<0. 58, the faster crack propagation velocity, the less D.S.I.F. but when crack propagation velocity arrive on ghear stress wave velocity, the D.S.I.F. but when crack propagation velocity arrive on shear stress wave velocity, the D.S.I.F. unexpectedly increases and decreases to zero.

  • PDF

Dynamic Stress Analysis of Flexible Multibody using DADS (DADS를 이용한 유연 다물체의 동응력 해석)

  • Ahn, K.W.;Seo, K.H.;Hwang, W.G.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.6
    • /
    • pp.107-112
    • /
    • 1998
  • A great deal of time and effort are required to evaluate the safety and durability of a vehicle structure in the vehicle development stage. It is difficult to find the reasons for cracks which occur in the body and frame of a vehicle during tests. Recently computer aided engineering techniques have been utilized to solve the problems of safety and durability of vehicles. In this study, a dynamic stress analysis is performed on the frame of the vehicle by rigid and flexible multibody dynamics techniques. The result of the analysis is compared to that of the actual test. The full vehicle dynamic models for the rigid and flexible bodies are developed by DADS package. The modal coordinate system is used to save time for the dynamic stress analysis. The flexible multibody dynamic models have 12 normal modes considering the flexibility of the frame. Dynamic stresses arc calculated by relating the stress influence coefficients and the applied forces.

  • PDF

Calculation of Dynamic Stress Time History of a Component Using Computer Simulation (컴퓨터 시뮬레이션을 이용한 동응력 이력 계산기술 개발)

  • 박찬종;박태원
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.1
    • /
    • pp.52-60
    • /
    • 2000
  • In order to design a reliable machine component efficiently, it is necessary to set up the process of durability analysis using computer simulation technique. In this paper, two methods for dynamic stress calculation, which are basis of durability analysis, are reviewed. Then, a user-oriented dynamic stress analysis program is developed from these two algorithms together with a general-purpose flexible body dynamic analysis and structural analysis programs. Finally, a slider-crank mechanism which has a flexible connecting-rod is chosen to show the special characteristics of these two dynamic stress calculation methods.

  • PDF

A Stress Management Strategy -Psychodynamic Approach- (스트레스 대응전략 -정신역동적 접근-)

  • Hwang, Ik-Keun
    • Korean Journal of Psychosomatic Medicine
    • /
    • v.3 no.1
    • /
    • pp.58-63
    • /
    • 1995
  • The author introduced 12 session short term dynamic psychotherapy for the intervention of stress related disorders. An examplary case was introduced to suggest the clinal usefulness of time limitted short term dynamic psychotherapy for stress related disorders. It was suggested that the term "stress" should be limitted to certain natural and man-made catastrophies and disasters whose consequences rep quire a total reorganization of the person. Common defensive manuvers and psychological responses in the stress disorders were also reviewed.

  • PDF

Numerical and Experimental Verification of Stress Wave Control Effect in SHPB Experiment using Pulse Shaper (Pulse Shaper를 이용한 SHPB 실험 응력파 제어 효과의 해석 및 실험적 검증)

  • Kim, Y.H.;Woo, M.A.;Kang, B.S.;Kim, J.
    • Transactions of Materials Processing
    • /
    • v.26 no.5
    • /
    • pp.314-322
    • /
    • 2017
  • In the high-speed forming analysis, dynamic material properties considering a high strain rate are required. The split Hopkinson pressure bar (SHPB) experiment was performed for measuring dynamic material properties under high strain rate. The pulse shaping method was used to improve the accuracy of the SHPB experiment. A pulse shaper attached to the front of the incident bar was used for specimen dynamic stress equilibrium through stress wave control. Numerical analysis and SHPB test were performed to verify whether the pulse shaper affects the dynamic stress equilibrium in copper and Al6061 specimens. The results of SHPB test and numerical analysis show that the pulse shaper contributes to the dynamic stress equilibrium. Based on the improved stress equilibrium using a pulse shaper, the flow stress curves for copper and Al6061 materials were obtained at strain rates of 1344.4/sec and 1291.6/sec, respectively.

Dynamic deformation behavior of rubber under high strain rate compressive loading (플라스틱 SHPB를 사용한 고무의 고변형률 하중하에서의 동적변형 거동)

  • 이억섭;김경준
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.849-853
    • /
    • 2002
  • A specific experimental method, the split Hopkinson pressure bar (SHPB) technique has been widely used to determine the dynamic material properties under the impact compressive loading conditions with strain-rate of the order of 103/s~104/s. In this paper, dynamic deformation behaviors of rubber materials widely used for the isolation of vibration from varying structures under dynamic loading are determined using a Split Hopkinson Pressure Bar technique.

  • PDF