• Title/Summary/Keyword: Dynamic stabilization

Search Result 304, Processing Time 0.029 seconds

A Learning Controller for Repetitive Gait Control of Biped Walking Robot

  • Kho, Jae-Won;Lim, Dong-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1464-1468
    • /
    • 2004
  • This paper presents a learning controller for repetitive gait control of biped walking robot. We propose the iterative learning control algorithm which can learn periodic nonlinear load change ocuured according to the walking period through the iterative learning, not calculating the complex dynamics of walking robot. The learning control scheme consists of a feedforward learning rule and linear feedback control input for stabilization of learning system. The feasibility of learning control to biped robotic motion is shown via dynamic simulation with 12-DOF biped walking robot.

  • PDF

Stabilization control of inverted Ball-Beam system by the linear controller (볼-막대 시스템의 안정화를 위한 선형제어에 관한 연구)

  • 신기수;박래방;권순재
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.76-79
    • /
    • 1999
  • A study on simulation using Matlab shows the dynamic condition of a beam on feed-back with encorder. A controller for rapid response interpreted the stability on simulation with pole-placement technique. The effect of response was considered feed-back gain. The result of feed-back is described that various feed-back coefficient shows stable controll systems. It would be expected each result according to controllers.

  • PDF

A. Study on Power System Stabilization by using Parameter Optimization (최적 파라미터를 이용한 전력계통 안정화에 관한 연구)

  • Moon, Young-Hyun;Kwak, No-Hong
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.179-183
    • /
    • 1989
  • This study presents a methodology to choose the optimal parameter of controller by using the performance index sensitivity. The pro-posed method is to select the controller parameter to have the minimum sensitivity. It is shown that the optimal parameter proves the effectiveness in the dynamic stability of power system.

  • PDF

Design of Stabilization Algorithm for Unmanned Bicycle

  • Moon, Ji-Woon;Lee, Sang-Duck;Ham, Woon-Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.51.3-51
    • /
    • 2001
  • In this paper, research of unmanned electric bicycle based on autonomic traveling is discussed. We derived dynamic equation of bicycle and introduced control theory that bicycle´s tilt angle and velocity is stable in some region. We implemented system using DSP processor, accelerometer and DC motor. Then, we carried out an experiment based on studied Control theory.

  • PDF

Study on The Attitude Stabilization Techniques of Leo Satellites

  • Hwan, Lho-Young;Yong, Jung-Kang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.56.5-56
    • /
    • 2001
  • In the three axis control of satellite by using reaction wheel and gyro, a reaction wheel produces the control torque by the wheel speed or momentum, and a gyro carries out measuring of the attitude angle and the attitude angular velocity In this study, dynamic modelling of the Low Earth Orbit (LEO) is consisted of the one from the rotational motion of the satellite with the basic rigid body and a flexible body model, and the gyro in addition to the reaction wheel model. The results obtained by the robust controller are compared with those of the PI (Proportional and Integration) controller which is commonly used for the stabilizing satellite.

  • PDF

Stabilization of Attitude for Autonomous Bicycle System Using Sliding Mode Control

  • Park, In-Gyu;Ham, Woon-Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.173.3-173
    • /
    • 2001
  • In this paper, attitude control of autonomous system using bike based on variable structure control is discussed. Variable structure control is more than a promising technique in the field of nonlinear control. It permits the realization of very robust and simple regulators, with appealing sliding mode characteristics especially if the considered dynamics requires a very short sampling time. We derive dynamic equation of it and demonstrate that the designed controller stabilizes attitude simultaneously regardless of wheel position by computer simulation.

  • PDF

A Design of SPS Controller on Power System using Genetic Algorithm (GA를 이용한 전력시스템의 SPS제어기 설계)

  • 이창우;왕용필;정형환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.657-666
    • /
    • 2004
  • A Design of GA-based SPS controller for power system stabilization was investigated in this paper. The design problem of SPS controller is formulated as an optimization problem using GA. The dynamic characteristic responses are considered to verify the performance of the proposed SPS under various disturbances and operation conditions. The simulation results show that the proposed SPS controller provides most of the damping and improves greatly the voltage profile of the system under two different disturbances.

Time Division Proportional-Integral Power System Stabilizer Using The Gradiant Method (기울기 방법을 이용한 시분할 PI 전력계통 안정화 장치)

  • Jung, Hae-Won;Baek, Young-Sik
    • Proceedings of the KIEE Conference
    • /
    • 1997.07c
    • /
    • pp.900-902
    • /
    • 1997
  • Stabilization of Power systems is investigated using a proportional-integral power system stabilizer(PI PSS). Time division PI PSS is examined in this paper. Two approaches are presented for determining the optimal stabilizer gains of the proposed PI PSS. Simulation results show that the proposed PI PSS yields better system dynamic performance and stability than the sub-optimal stabilizer in the sense of having greater damping in response to a step disturbance.

  • PDF

Pressure Control Drive of SRM for Hydraulic Pump with Pressure Predict Method and Direct Torque Control Method (압력예측기법과 직접순시토크제어기법을 통한 유압펌프용 SRM의 압력제어구동)

  • Seok, Seung-Hun;Liang, Jianing;Lee, Dong-Hee;Ahn, Jin-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2007.11a
    • /
    • pp.163-165
    • /
    • 2007
  • Direct Instantaneous Pressure Control(DIPC) method of SRM using pressure predict method is presented in this paper. A hydraulic pump system has an inherent defect that its dynamic behavior causes by interaction between the sensor and hydraulic load. It will make sometimes the whole system become oscillatory and unstable. Proposed system integrates direct instantaneous torque control (DITC) and Smith predictor to improve dynamic performance and stabilization. The proposed hydraulic oil pump system is verified by computer simulation and experimental results.

  • PDF

A Thought on the Dynamic Mechanism of Coevolution between IT and Society and Its Policy Implications (정보기술과 사회 공진화의 동태적 메커니즘과 정책적 함의)

  • Kim, Sang-Wook;KIm, Sook-Hee
    • Korean System Dynamics Review
    • /
    • v.7 no.2
    • /
    • pp.5-20
    • /
    • 2006
  • In the advent of ubiquitous information technology (u-IT) as a new emerging horizon of information society, inflated expectations regarding u-IT are growing very fast and higher than those made in the past, which would perhaps result in serious bust after boom and incur tremendous amount of social costs. This paper thus investigates a dynamic mechanism underlying the coevolution between information technology and society by applying systems thinking, particularly, with a focus on the typical phenomenon, 'hype curve' which shows how new technologies initially grow too fast for their own good, crashing from a peak of inflated expectations into a trough of disillusionment before stabilizing on a plateau of productivity. Three basic questions are explored to answer by investigating the mechanisms underlying the 'boom-bust' phenomenon: First, why hype curve appears in the process of technology and society coevolution. Second, how to enhance the stabilization level. Third, when is the right time for the policy intervention.

  • PDF