• 제목/요약/키워드: Dynamic shear behavior

검색결과 472건 처리시간 0.031초

저속충격시험을 이용한 고체추진제의 동적 응력-변형률 특성 연구 (Study on the Dynamic Stress-Strain Behavior of Solid Propellant Using Low-Velocity Impact Test)

  • 황재민;고은수;조현준;김인걸;김재훈
    • 한국항공우주학회지
    • /
    • 제49권10호
    • /
    • pp.813-820
    • /
    • 2021
  • 본 연구에서는 고체추진제의 동적 응력-변형률 특성을 고찰하기 위하여 저속충격시험을 수행하였다. 저속충격시험 시 충격체(Impactor)의 하중, 변위를 측정하여 고체추진제의 동적 거동을 확인하였다. 3점 굽힘 형태의 저속충격시험을 수행하였고, 이때 발생하는 국소변위와 길이가 짧고 두께가 두꺼운 고체추진제 시편의 전단 변위를 보상하여 순수 굽힘변위를 계산하였다. 보상된 변위와 측정된 하중을 사용하여 응력과 변형률을 계산하였고 응력-변형률 곡선으로부터 고체추진제의 동적 물성을 획득하여 이를 정적 굽힘 물성과 비교하였다. 운용 환경에 따른 온도별 고체추진제의 동적 물성을 획득하기 위해 상온, 고온, 저온에서 실험을 수행하고 결과를 비교분석하였다.

Modelling headed stud shear connectors of steel-concrete pushout tests with PCHCS and concrete topping

  • Lucas Mognon Santiago Prates;Felipe Piana Vendramell Ferreira;Alexandre Rossi;Carlos Humberto Martins
    • Steel and Composite Structures
    • /
    • 제46권4호
    • /
    • pp.451-469
    • /
    • 2023
  • The use of precast hollow-core slabs (PCHCS) in civil construction has been increasing due to the speed of execution and reduction in the weight of flooring systems. However, in the literature there are no studies that present a finite element model (FEM) to predict the load-slip relationship behavior of pushout tests, considering headed stud shear connector and PCHCS placed at the upper flange of the downstand steel profile. Thus, the present paper aims to develop a FEM, which is based on tests to fill this gap. For this task, geometrical non-linear analyses are carried out in the ABAQUS software. The FEM is calibrated by sensitivity analyses, considering different types of analysis, the friction coefficient at the steel-concrete interface, as well as the constitutive model of the headed stud shear connector. Subsequently, a parametric study is performed to assess the influence of the number of connector lines, type of filling and height of the PCHCS. The results are compared with analytical models that predict the headed stud resistance. In total, 158 finite element models are processed. It was concluded that the dynamic implicit analysis (quasi-static) showed better convergence of the equilibrium trajectory when compared to the static analysis, such as arc-length method. The friction coefficient value of 0.5 was indicated to predict the load-slip relationship behavior of all models investigated. The headed stud shear connector rupture was verified for the constitutive model capable of representing the fracture in the stress-strain relationship. Regarding the number of connector lines, there was an average increase of 108% in the resistance of the structure for models with two lines of connectors compared to the use of only one. The type of filling of the hollow core slab that presented the best results was the partial filling. Finally, the greater the height of the PCHCS, the greater the resistance of the headed stud.

진동하중 하에서 거친 암석 절리면의 동력 마찰거동 (Dynamic Frictional Behavior of Artificial Rough Rock Joints under Dynamic Loading)

  • 전석원;박병기
    • 터널과지하공간
    • /
    • 제16권2호
    • /
    • pp.166-178
    • /
    • 2006
  • 암반구조물의 대형, 대단면화에 따라 자유면에 노출된 암반블록의 거동특성 평가가 더욱 중요해지고 있으며, 최근 들어 지진이나 발파, 고속철도의 운행에 의한 진동 등으로 야기되는 동적하중의 발생빈도가 증가하는 추세이므로 동적 하중조건 하에서 암반 절리의 거동특성 파악을 위한 연구의 필요성이 증대되고 있다. 본 연구에서는 거친 절리면의 동적 마찰거동 특성 파악을 위해 인공 인장절리시료를 제작하고 3차원 표면거칠기 측정을 통해 인장절리면의 거칠기 특성을 분석하였으며, 다양한 조건에서 진동대 시험을 수행하였다. 절리면이 맞물린 조건에서 경사시험을 통해 구한 한계 경사각과 진동하중 하에서의 임계가속도로부터 역산한 정적 마찰각을 비교한 결과 동하중 하에서 정적 마찰각이 평균 $2.7^{\circ}$ 정도 낮게 산정되는 경향을 보였다. 엇물린 상태에서 진동하중에 의해 미끄러지는 암석블록의 가속도 및 변위 계측결과를 블록거동 프로그램에 의한 결과와 비교하여 동적 마찰각을 산정하였는데 동적 마찰각 역시 한계 경사각에 비해 평균 $1.8^{\circ}$ 감소하는 결과를 얻었다. 미끄러짐 변위패턴을 4가지로 분류하였으며 이는 절리면의 1차 거칠기와 관련있는 것으로 나타났다. 절리면이 맞물린 상태에서 측정된 한계 경사각과 정적 마찰각은 2차 거칠기를 표현하는 파라미터인 평균 거 각과 상관성을 가지는 것으로 보이나, 엇물린 상태에서 측정된 한계 경사각과 동적 마찰각은 거칠기 파라미터와 특별한 상관성을 파악할 수 없었다. 진동대 시험에 의한 동적, 정적 마찰각은 직접전단시험에 의한 마찰각 결과보다 작게 산정되었다.

On the size-dependent behavior of functionally graded micro-beams with porosities

  • Amar, Lemya Hanifi Hachemi;Kaci, Abdelhakim;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • 제64권5호
    • /
    • pp.527-541
    • /
    • 2017
  • In this work, a new hyperbolic shear deformation beam theory is proposed based on a modified couple stress theory (MCST) to investigate the bending and free vibration responses of functionally graded (FG) micro beam made of porous material. This non-classical micro-beam model introduces the material length scale coefficient which can capture the size influence. The non-classical beam model reduces to the classical beam model when the material length scale coefficient is set to zero. The mechanical material properties of the FG micro-beam are assumed to vary in the thickness direction and are estimated through the classical rule of mixture which is modified to approximate the porous material properties with even and uneven distributions of porosities phases. Effects of several important parameters such as power-law exponents, porosity distributions, porosity volume fractions, the material length scale parameter and slenderness ratios on bending and dynamic responses of FG micro-beams are investigated and discussed in detail. It is concluded that these effects play significant role in the mechanical behavior of porous FG micro-beams.

Free and forced analysis of perforated beams

  • Abdelrahman, Alaa A.;Eltaher, Mohamed A.;Kabeel, Abdallah M.;Abdraboh, Azza M.;Hendi, Asmaa A.
    • Steel and Composite Structures
    • /
    • 제31권5호
    • /
    • pp.489-502
    • /
    • 2019
  • This article presents a unified mathematical model to investigate free and forced vibration responses of perforated thin and thick beams. Analytical models of the equivalent geometrical and material characteristics for regularly squared perforated beam are developed. Because of the shear deformation regime increasing in perforated structures, the investigation of dynamical behaviors of these structures becomes more complicated and effects of rotary inertia and shear deformation should be considered. So, both Euler-Bernoulli and Timoshenko beam theories are proposed for thin and short (thick) beams, respectively. Mathematical closed forms for the eigenvalues and the corresponding eigenvectors as well as the forced vibration time response are derived. The validity of the developed analytical procedure is verified by comparing the obtained results with both analytical and numerical analyses and good agreement is detected. Numerical studies are presented to illustrate effects of beam slenderness ratio, filling ratio, as well as the number of holes on the dynamic behavior of perforated beams. The obtained results and concluding remarks are helpful in mechanical design and industrial applications of large devices and small systems (MEMS) based on perforated structure.

등가 전단 스프링 모델을 이용한 플로팅 슬래브궤도 연결부에서의 하중전달 특성 분석 (Investigation of Load Transfer Characteristics at Slab Joints In The Floating Slab Track by Equivalent Shear Spring Model)

  • 장승엽;안미경;최원일;박만호
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.2838-2843
    • /
    • 2011
  • Recently, the floating slab track that can effectively mitigate the vibration and structure-borne noise is being discussed to be adopted. The floating slab track which is a track system isolated from the sub-structure by vibration isolators. Unsimilarly to conventional track and the slab deflection is large. Therefore, the running safety and ride comfort should be investigated. Especially at slab joint since the load cannot be transferred, the possibility that the dynamic behavior of track and train became unstable is high. Thus, in general dowel bar are often installed at slab joints. To determine the appropriate dowel ratio the load transfer characteristics should be investigated. In this study, dowel bar joint is modeled by equivalent shear spring and this model is verified by comparison with experimental results. Using the proven model, the load transfer efficiency and deflection at slab joint according to dowel ratio, and stiffness and spacing of vibration isolator were examined.

  • PDF

Structural behavior of conventional and buckling restrained braced frames subjected to near-field ground motions

  • Guneyisi, Esra Mete;Ameen, Nali
    • Earthquakes and Structures
    • /
    • 제7권4호
    • /
    • pp.553-570
    • /
    • 2014
  • In this study, nonlinear dynamic analyses were performed in order to evaluate and compare the structural response of different type of moment resisting frame buildings equipped with conventional braces (CBs) and buckling restrained braces (BRBs) subjected to near-field ground motions. For this, the case study frames, namely, ordinary moment-resisting frame (OMRF) and special moment-resisting frame (SMRF) having two equal bays of 6 m and a total height of 20 m were utilized. Then, CBs and BRBs were inserted in the bays of the existing frames. As a brace pattern, diagonal type with different configurations were used for the braced frame structures. For the earthquake excitation, artificial pulses equivalent to Northridge and Kobe earthquake records were taken into account. The results in terms of the inter-story drift index, global damage index, base shear, top shear, damage index, and plastification were discussed. The analysis of the results indicated a considerable improvement in the structural performance of the existing frames with the inclusion of conventional and especially buckling-restrained braces.

Finite element vibration analysis of laminated composite parabolic thick plate frames

  • Das, Oguzhan;Ozturk, Hasan;Gonenli, Can
    • Steel and Composite Structures
    • /
    • 제35권1호
    • /
    • pp.43-59
    • /
    • 2020
  • In this study, free vibration analysis of laminated composite parabolic thick plate frames by using finite element method is introduced. Governing equations of an eigenvalue problem are obtained from First Order Shear Deformation Theory (FSDT). Finite element method is employed to obtain natural frequency values from the governing differential equations. The frames consist of two flat square plates and one singly curved plate. Parameters like radii of curvature, aspect ratio, ply orientation and boundary conditions are investigated to understand their effect on dynamic behavior of such a structure. In addition, multi-bay structures of such geometry with different stacking order are also taken into account. The composite frame structures are also modeled and simulated via ANSYS to verify the accuracy of the present study.

Numerical Simulation of Blood Cell Motion in a Simple Shear Flow

  • Choi, Choeng-Ryul;Kim, Chang-Nyung;Hong, Tae-Hyub
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1487-1491
    • /
    • 2008
  • Detailed knowledge on the motion of blood cells flowing in micro-channels under simple shear flow and the influence of blood flow is essential to provide a better understanding on the blood rheological properties and blood cell aggregation. The microscopic behavior of red blood cell (RBCs) is numerically investigated using a fluid-structure interaction (FSI) method based on the Arbitrary-Lagrangian-Eulerian (ALE) approach and the dynamic mesh method (smoothing and remeshing) in FLUENT (ANSYS Inc., USA). The employed FSI method could be applied to the motions and deformations of a single blood cell and multiple blood cells, and the primary thrombogenesis caused by platelet aggregation. It is expected that, combined with a sophisticated large-scale computational technique, the simulation method will be useful for understanding the overall properties of blood flow from blood cellular level (microscopic) to the resulting rheological properties of blood as a mass (macroscopic).

  • PDF

Ball Grid Array 보드 어셈블리의 동적굽힘 신뢰성에 미치는 언더필의 영향 (Effects of Underfills on the Dynamic Bending Reliability of Ball Grid Array Board Assembly)

  • 장재원;방정환;유세훈;김목순;김준기
    • 한국재료학회지
    • /
    • 제21권12호
    • /
    • pp.650-654
    • /
    • 2011
  • In this paper, the effects of conventional and newly developed elastomer modified underfill materials on the mechanical shock reliability of BGA board assembly were studied for application in mobile electronics. The mechanical shock reliability was evaluated through a three point dynamic bending test proposed by Motorola. The thermal properties of the underfills were measured by a DSC machine. Through the DSC results, the curing condition of the underfills was selected. Two types of underfills showed similar curing behavior. During the dynamic bending reliability test, the strain of the PCB was step increased from 0.2% to 1.5% until the failure circuit was detected at a 50 kHz sampling rate. The dynamic bending reliability of BGA board assembly using elastomer modified underfill was found to be superior to that of conventional underfill. From mechanical and microstructure analyses, the disturbance of crack propagation by the presence of submicron elastomer particles was considered to be mainly responsible for that result rather than the shear strength or elastic modulus of underfill joint.