• Title/Summary/Keyword: Dynamic serviceability

Search Result 125, Processing Time 0.024 seconds

On-line Tests on Collapse Mode Controlled Steel Frame (붕괴모드 컨트롤형 철골조 시스템의 온라인 지진응답실험)

  • Lee, Seung-Jae;Oh, Sang-Hoon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.9 no.1
    • /
    • pp.47-52
    • /
    • 2009
  • In this study, it is demonstrated by a pseudo dynamic earthquake response tests that combination of semi-rigid partial-strength using the high performance-high strength bolts and inter-story hysteretic damper system creates a fairly good structural system that satisfies not only the serviceability requirement under moderate earthquakes but unexpected failure of damper system.

  • PDF

A Study on the control force of HMD for vibration control of the tall building structure (고층 구조물의 진동제어를 위한 복합형 질량댐퍼의 제어력 설계에 관한 연구)

  • Park, Jin-Il;Park, Hae-Dong;Choi, Hyun;Kim, Doo-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.276-281
    • /
    • 2000
  • As the construction of the high-rise building increases worldwide, the effort has been exerted to improve the safety and serviceability if the structure against various types of external dynamic loads such as wind load, seismic load, etc. The mass damper, defined as dynamic absorber in mechanical engineering is known one of the effective methods to control the vibration of flexible large structures. The hybrid mass damper, HMD is known as the most appropriate type of the mass dampers. In this paper, the control force was designed for HMD by numerical simulations and the performance of HMD to control the flexible vibration of the steel tower induced by sinusoidal force excitation was evaluated, also TMD was designed for a 1-DOF lumped mass model.

  • PDF

Investigation on dynamic behaviour of conventional railway bridge subjected to high speed train loading (고속열차 주행에 따른 기존철도교의 동적거동 특성분석)

  • 오지택;양신추;민경주;이종득
    • Proceedings of the KSR Conference
    • /
    • 1998.11a
    • /
    • pp.79-86
    • /
    • 1998
  • The purpose of this paper is to examine the validation to passage of high speed train on conventional railway bridges. The dynamic behavior of bridge is analyzed by using the developed 3-D program. The train is assumed to moving loads and track to distributed masses. The centrifugal force due to curved track is also considered. The numerical results are compared with those measured in the site to demonstrate the efficiency of the developed program. From the parametric study, it is notified that conventional bridge gives good serviceability to passage of high speed train, specially such as TGV-K.

  • PDF

System identification of steel framed structures with semi-rigid connections

  • Katkhuda, Hasan N.;Dwairi, Hazim M.;Shatarat, Nasim
    • Structural Engineering and Mechanics
    • /
    • v.34 no.3
    • /
    • pp.351-366
    • /
    • 2010
  • A novel system identification and structural health assessment procedure of steel framed structures with semi-rigid connections is presented in this paper. It is capable of detecting damages at the local element level under normal operating conditions; i.e., serviceability limit state. The procedure is a linear time-domain system identification technique in which the structure responses are required, whereas the dynamic excitation force is not required to identify the structural parameters. The procedure tracks changes in the stiffness properties of all the elements in a structure. It can identify damage-free and damaged structural elements very accurately when excited by different types of dynamic loadings. The method is elaborated with the help of several numerical examples. The results indicate that the proposed algorithm identified the structures correctly and detected the pre-imposed damages in the frames when excited by earthquake, impact, and harmonic loadings. The algorithm can potentially be used for structural health assessment and monitoring of existing structures with minimum disruption of operations. Since the procedure requires only a few time points of response information, it is expected to be economic and efficient.

Numerical and experimental investigation for damage detection in FRP composite plates using support vector machine algorithm

  • Shyamala, Prashanth;Mondal, Subhajit;Chakraborty, Sushanta
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.2
    • /
    • pp.243-260
    • /
    • 2018
  • Detection of damages in fibre reinforced plastic (FRP) composite structures is important from the safety and serviceability point of view. Usually, damage is realized as a local reduction of stiffness and if dynamic responses of the structure are sensitive enough to such changes in stiffness, then a well posed inverse problem can provide an efficient solution to the damage detection problem. Usually, such inverse problems are solved within the framework of pattern recognition. Support Vector Machine (SVM) Algorithm is one such methodology, which minimizes the weighted differences between the experimentally observed dynamic responses and those computed using the finite element model- by optimizing appropriately chosen parameters, such as stiffness. A damage detection strategy is hereby proposed using SVM which perform stepwise by first locating and then determining the severity of the damage. The SVM algorithm uses simulations of only a limited number of damage scenarios and trains the algorithm in such a way so as to detect damages at unknown locations by recognizing the pattern of changes in dynamic responses. A rectangular fiber reinforced plastic composite plate has been investigated both numerically and experimentally to observe the efficiency of the SVM algorithm for damage detection. Experimentally determined modal responses, such as natural frequencies and mode shapes are used as observable parameters. The results are encouraging since a high percentage of damage cases have been successfully determined using the proposed algorithm.

An Experimental and Analytical study on the Steel Plate Girder Railway bridge in the applying External Post-tensioning Method (강철도교에 대한 외부 후긴장 보강공법의 적용에 관한 실험 및 해석적 연구)

  • Park, Young-Hoon;Cho, Sun-Kyu;Choi, Jung-Youl;Park, Yong-Gul
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.2 s.33
    • /
    • pp.151-159
    • /
    • 2006
  • It analyzed the mechanical behaviors of non-ballasted railway bridge (steel plate girder type) with ballast reinforced on the finite element analysis, field test and laboratory test far the static and dynamic responses. The major objective of this study is to investigate the effects and application of reinforcement for steel plate girder railway bridge by the external post-tensioning method. The reinforcement of non-ballast railway bridge had obviously stable dynamic behaviors due to the additional dead force which was ballast. But in case of static behaviors, static displacements and stresses had increased nearly the allowable values. Therefore we analyzed the mechanical behaviors of non-ballasted railway bridge with ballast reinforced and external post-tensioning reinforced on the finite element analysis and laboratory test for the static and dynamic behavior. As a result, the reinforcement of ballasted railway bridge the external post-tensioning method are obviously effective for the additional dead force which is ballast. The analytical and experimental study are carried out to investigate the post-tension force decrease bending behavior and deflection in composite bridge for serviceability. The servicing railway bridge with ballast reinforced has need of the reasonable reinforcement measures which could be reducing the effect of additional dead load that degradation phenomenon of structure by an unusual. stresses and a drop durability.

Seismic design of irregular space steel frames using advanced methods of analysis

  • Vasilopoulos, A.A.;Bazeos, N.;Beskos, D.E.
    • Steel and Composite Structures
    • /
    • v.8 no.1
    • /
    • pp.53-83
    • /
    • 2008
  • A rational and efficient seismic design methodology for irregular space steel frames using advanced methods of analysis in the framework of Eurocodes 8 and 3 is presented. This design methodology employs an advanced static or dynamic finite element method of analysis that takes into account geometrical and material non-linearities and member and frame imperfections. The inelastic static analysis (pushover) is employed with multimodal load along the height of the building combining the first few modes. The inelastic dynamic method in the time domain is employed with accelerograms taken from real earthquakes scaled so as to be compatible with the elastic design spectrum of Eurocode 8. The design procedure starts with assumed member sections, continues with the checking of the damage and ultimate limit states requirements, the serviceability requirements and ends with the adjustment of member sizes. Thus it can sufficiently capture the limit states of displacements, rotations, strength, stability and damage of the structure and its individual members so that separate member capacity checks through the interaction equations of Eurocode 3 or the usage of the conservative and crude q-factor suggested in Eurocode 8 are not required. Two numerical examples dealing with the seismic design of irregular space steel moment resisting frames are presented to illustrate the proposed method and demonstrate its advantages. The first considers a seven storey geometrically regular frame with in-plan eccentricities, while the second a six storey frame with a setback.

A Study of Passive Magnetic Device based on BIM for the Vibration Conrol of Structures (BIM기반의 구조물 진동제어를 위한 Passive Magnetic Device 개발에 관한 연구)

  • Koo, Sun-Mo;Kim, Jae-Jun
    • Journal of KIBIM
    • /
    • v.6 no.3
    • /
    • pp.42-48
    • /
    • 2016
  • Structural members are designed to maintain the load-carrying capacity as well as structural strength, and the structural serviceability such as the deflection, cracks, and vibration to give the occupants uncomfortable environment should be checked. Recently, the importance of the vibration has been issued since the Techno Mart accident due to vibration resonance. This study provides a passive vibration control system using the repulsion force of magnets to reduce dynamic vibrations. The systems is devised by importing the constraint condition by a hinge to operate magnets installed at two adjacent locations. The effectiveness of the proposed system is investigated by the vibration control test of a steel beam with and without the control system. It is illustrated in the test that the system is activated by the control forces executed by the magnets and can be utilized in reducing the dynamic responses. The system can be applied to pedestrian bridge and traffic bridge. The applicability is expected in the future by optimizing the factors to affect the dynamic responses like the intensity, mass, locations of magnets.

Field measurement-based wind-induced response analysis of multi-tower building with tuned mass damper

  • Chen, Xin;Zhang, Zhiqiang;Li, Aiqun;Hu, Liang;Liu, Xianming;Fan, Zhong;Sun, Peng
    • Wind and Structures
    • /
    • v.32 no.2
    • /
    • pp.143-159
    • /
    • 2021
  • The 246.8-m-tall Beijing Olympic Tower (BOT) is a new landmark in Beijing City, China. Its unique architectural style with five sub-towers and a large tower crown gives rise to complex dynamic characteristics. Thus, it is wind-sensitive, and a double-stage pendulum tuned mass damper (DPTMD) has been installed for vibration mitigation. In this study, a finite-element analysis of the wind-induced responses of the tower based on full-scale measurement results was performed. First, the structure of the BOT and the full-scale measurement are introduced. According to the measured dynamic characteristics of the BOT, such as the natural frequencies, modal shapes, and damping ratios, an accurate finite-element model (FEM) was established and updated. On the basis of wind measurements, as well as wind-tunnel test results, the wind load on the model was calculated. Then, the wind-induced responses of the BOT with the DPTMD were obtained and compared with the measured responses to assess the numerical wind-induced response analysis method. Finally, the wind-induced serviceability of the BOT was evaluated according to the field measurement results for the wind-induced response and was found to be satisfactory for human comfort.

A Study on the Dynamic Analysis of One-way Hollow Slab Using Equivalent Plate Element (등가플레이트 요소를 이용한 일방향 중공슬래브의 동적해석에 관한 연구)

  • Kang, Joo-Won;Lim, Jun-Ho;Chae, Seoung-Hun;Kim, Gee-Cheol;Seok, Keun-Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.5
    • /
    • pp.447-454
    • /
    • 2012
  • Considering that the weight of a hollow slab system is not increased with an incremental increase in its thickness, and that the flexural stiffness of a hollow slab is not significantly lower than that of a general slab, there has been a growing need for hollow slab system, because long span structures are in great demand. In a long span structure, the problem of vibration of floor slabs frequently occurs, and the dynamic characteristics of a hollow slab system are quite different from the conventional floor system. It is required to investigate the safety and the serviceability of hollow slab. Therefore, there exists a necessity for accurate vibration analysis. Hollow slab should be modeled by refined mesh for accurate vibration analysis. For the efficiency of the Eigenvalue Analysis, an equivalent plate slab model when can relatively precisely represent the dynamic behavior of a one-way hollow slab system is used. In conclusion, equivalent plate models relatively precisely presented the dynamic characteristics of one-way hollows.