• Title/Summary/Keyword: Dynamic response analysis

Search Result 2,881, Processing Time 0.039 seconds

A Development of Finite Element Model on Jet Loom Structures for the Improvement of Dynamic Characteristics (동특성 개선을 위한 제트직기 구조물의 유한요소모델 개발)

  • 전두환;권상석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.824-829
    • /
    • 2002
  • Since many reciprocating and rotating components are attached to jet loom structure. it is exposed to a more vibration and moise problems than the other textile machinery. Thus the design of the jet loom frame is very important to characterize the dynamic response. In this study, a finite element model of jet loom main frame was developed to investigate the dynamic characteristics of jet loom. Two different finite element models of different main frames were constructed and these models were validated by the experimental results. Dynamic characteristics such natural frequencies and mode shapes were in good agreement between the finite element analysis and experimental results within 10% error range. It is expected that the result from this study can be used as the basic information of jet loom dynamic analysis and be extended for further analysis of forced response case.

  • PDF

Seismic response analysis of layered soils considering effect of surcharge mass using HFTD approach. Part II: Nonlinear HFTD and numerical examples

  • Saffarian, Mohammad A.;Bagheripour, Mohammad H.
    • Geomechanics and Engineering
    • /
    • v.6 no.6
    • /
    • pp.531-544
    • /
    • 2014
  • Studies of earthquakes over the last 50 years and the examination of dynamic soil behavior reveal that soil behavior is highly nonlinear and hysteretic even at small strains. Nonlinear behavior of soils during a seismic event has a predominant role in current site response analysis approaches. Common approaches to ground response analysis include linear, equivalent linear and nonlinear methods. These methods of ground response analysis may also be categorized into time domain and frequency domain concepts. Simplicity in developing analytical relations and accuracy in considering soils' dynamic properties dependency to loading frequency are benefits of frequency domain analysis. On the other hand, nonlinear methods are complicated and time consuming mainly because of their step by step integrations in time intervals. In part Ι of this paper, governing equations for seismic response analysis of surcharged and layered soils were developed using fundamental of wave propagation theory based on transfer function and boundary conditions. In this part, nonlinear seismic ground response is analyzed using extended HFTD method. The extended HFTD method benefits Newton-Raphson procedure which applies regular iterations and follows soils' fundamental stress-strain curve until convergence is achieved. The nonlinear HFTD approach developed here are applied to some examples presented in this part of the paper. Case studies are carried in which effects of some influencing parameters on the response are investigated. Results show that the current approach is sufficiently accurate, efficient, and fast converging. Discussions on the results obtained are presented throughout this part of the paper.

An SDOF model of a four-sided fixed RC wall having an opening for blast response simulation

  • S.H., Sung;H., Ji
    • Structural Engineering and Mechanics
    • /
    • v.84 no.5
    • /
    • pp.675-684
    • /
    • 2022
  • The conventional single-degree-of-freedom (SDOF) system is appropriate for dynamic response analysis of paneltype structures without an opening. However, the typical building structures usually have four-sided fixed walls having an opening. Therefore, it may induce a considerable error when dynamic responses are estimated based on the conventional SDOF system, since the SDOF system cannot consider the effect of an opening during the SDOF analysis. For this reason, this study proposes a new SDOF system to consider the effect of an opening by adjusting its load-mass factor. The load-mass factor can be modified based on the assumption that the behaviors of the four-sided fixed wall with an opening is very similar to the behaviors of the same size wall without an opening, when the uniformly distributed blast loaded area is identical. In order to confirm a feasibility of the proposed SDOF system, a series of numerical simulations were carried out for the four-sided fixed reinforced concrete (RC) wall under a blast load. The dynamic responses estimated from the proposed SDOF system and the conventional SDOF system were compared with the dynamic responses evaluated from the finite element (FE) analysis. Especially, for the maximum dynamic responses except for 50% opening case, the proposed SDOF system had about 1.1% to 25.7% normalized errors while the conventional SDOF system had about 4.1% to 49.1% normalized errors.

Dynamic impedance of a 3×3 pile-group system: Soil plasticity effects

  • Gheddar, Kamal;Sbartai, Badreddine;Messioud, Salah;Dias, Daniel
    • Structural Engineering and Mechanics
    • /
    • v.83 no.3
    • /
    • pp.377-386
    • /
    • 2022
  • This paper considers dynamic impedance functions and presents a detailed analysis of the soil plasticity influence on the pile-group foundation dynamic response. A three-dimensional finite element model is proposed, and a calculation method considering the time domain is detailed for the nonlinear dynamic impedance functions. The soil mass is modeled as continuum elastoplastic solid using the Mohr-Coulomb shear failure criterion. The piles are modeled as continuum solids and the slab as a structural plate-type element. Quiet boundaries are implemented to avoid wave reflection on the boundaries. The model and method of analysis are validated by comparison with those published on literature. Numerical results are presented in terms of horizontal and vertical nonlinear dynamic impedances as a function of the shear soil parameters (cohesion and internal friction angle), pile spacing ratio and frequencies of the dynamic signal.

Investigation on the Determination Method of Rayleigh Damping Coefficients for Dynamic Time History Elastic-Plastic Seismic Analysis (동적 시간이력 탄소성 지진 해석을 위한 레일레이 감쇠계수 결정방법 고찰)

  • Kim, Jong Sung;Lee, Seok Hyun;Kweon, Hyeong Do;Oh, Chang-Young
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.13 no.2
    • /
    • pp.38-43
    • /
    • 2017
  • This paper investigates how to determine the Rayleigh damping coefficients for dynamic time history seismic analysis of piping systems. Three methods are applied. The first one is a conventional method to use the natural frequencies of the mode 1 and 2, derived from dynamic analysis. The second method is to determine the Rayleigh damping coefficients based on frequency range of the acceleration histories. The last one is a iterative transient response analysis method using the transient analysis results without and with damping. It is found that the conventional method and the iterative transient response method yield the same results whereas the acceleration frequency-basis method provides more conservative result than the other methods. In addition, it is concluded that the iterative transient response method is recommended.

Evaluation of Seismic Response for a Suspension Bridge (현수교의 지진응답 평가)

  • 김호경;유동호;주석범
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.1
    • /
    • pp.57-63
    • /
    • 2003
  • A comparative study was performed for a suspension bridge to grasp the possible differences in seismic responses evaluated by several analytical methods. The items mainly investigated are the linear vs. nonlinear response, the response spectrum method vs. the linear dynamic analysis method, and the damping ratio and it's implementation into analysis procedures. According to the numerical example, it is found that the seismic responses are considerably affected by the damping-related parameters even though slight differences are shown depending on the response quantities and the exciting directions. On the other hand, it is also confirmed that the seismic responses are less affected by the analysis method-related parameters such as the response spectrum method vs. the linear dynamic analysis method, and the linear and nonlinear analysis method. The response spectrum method is expected to give conservative results for the examined bridge, provided that the design response spectrum in the Korean Highway Design Specification is modified according to the proper damping ratio.

A Study on the Dynamic Response of Cylindrical Wind Turbine Tower Considering Added Mass (부가수질량을 고려한 실린더형 풍력발전기타워의 동적응답연구)

  • Son, Choong-Yul;Lee, Kang-Su;Lee, Jung-Tak
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.348-358
    • /
    • 2008
  • Unlike structures in the air, the vibration analysis of a submerged or floating structure such as offshore structures is possibly only when the fluid-structures is understood, as the whole or part of the structure is in contact with water. Through the comparision between the experimental result and the finite element analysis result for a simple cylindrical model, it was verified that an added mass effects on the cylindrical structure. Using the commercial FEA program ANSYS(v.11.0), underwater added mass was superposed on the mass matrix of the structure. A frequency response analysis of forced vibration in the frequency considered the dynamic load was also performed. It was proposed to find the several important modes of resonance peak for these fixed cylindrical type structures. Furthermore, it is expected that the analysis method and the data in this study can be applied to a dynamic structural design and dynamic performance evaluation for the ground and marine purpose of power generator by wind.

  • PDF

A Study of Sensitivity Analysis on Dynamic Response of Three Dimensional Rectilinear Structure (3 차원 직선형 구조물의 동적응답에 대한 감도해석)

  • Moon, D.H.;Kang, H.S.;Choi, M.S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.556-562
    • /
    • 2000
  • This paper presents new sensitivity analysis algorithm for the dynamic response of three dimensional rectilinear type structure. This method is derived from a combination of the transfer stiffness coefficient method(TSCM) and the Newmark method. We developed dynamic response analysis algorithm by TSCM. This method has more safe computational precision and time than transfer matrix method(TMM). We defined new design variable and object function, and computated simple three dimensional computation model by TSCM. The presented analysis algorithm was validated by results of changing design variable.

  • PDF

Dynamic stiffness based computation of response for framed machine foundations

  • Lakshmanan, N.;Gopalakrishnan, N.;Rama Rao, G.V.;Sathish kumar, K.
    • Geomechanics and Engineering
    • /
    • v.1 no.2
    • /
    • pp.121-142
    • /
    • 2009
  • The paper deals with the applications of spectral finite element method to the dynamic analysis of framed foundations supporting high speed machines. Comparative performance of approximate dynamic stiffness methods formulated using static stiffness and lumped or consistent or average mass matrices with the exact spectral finite element for a three dimensional Euler-Bernoulli beam element is presented. The convergence of response computed using mode superposition method with the appropriate dynamic stiffness method as the number of modes increase is illustrated. Frequency proportional discretisation level required for mode superposition and approximate dynamic stiffness methods is outlined. It is reiterated that the results of exact dynamic stiffness method are invariant with reference to the discretisation level. The Eigen-frequencies of the system are evaluated using William-Wittrick algorithm and Sturm number generation in the $LDL^T$ decomposition of the real part of the dynamic stiffness matrix, as they cannot be explicitly evaluated. Major's method for dynamic analysis of machine supporting structures is modified and the plane frames are replaced with springs of exact dynamic stiffness and dynamically flexible longitudinal frames. Results of the analysis are compared with exact values. The possible simplifications that could be introduced for a typical machine induced excitation on a framed structure are illustrated and the developed program is modified to account for dynamic constraint equations with a master slave degree of freedom (DOF) option.

Seismic Reliability Analysis of Offshore Wind Turbine Jacket Structure Using Stress Limit State (응력한계상태를 이용한 해상풍력발전기 재킷구조물의 지진신뢰성해석)

  • Lee, Gee-Nam;Kim, Dong-Hyawn
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.4
    • /
    • pp.260-267
    • /
    • 2016
  • Considering the effect of dynamic response amplification, a reliability analysis of an offshore wind turbine support structure under an earthquake is presented. A reliability analysis based on the dynamic response requires a large amount of time when using not only a level 3 approach but also level 2 such as a first order reliability method (FORM). Moreover, if a limit state is defined by using the maximum stress at a structural joint where stress concentration occurs, a three-dimensional element should be used in the finite element analysis. This makes the computational load much heavier. To deal with this kind of problem, two techniques are suggested in this paper. One is the application of a quasi-static structural analysis that takes the dynamic amplification effect into account. The other is the use of a stress concentration factor to estimate the maximum local stress. The proposed reliability analysis is performed using a level 2 FORM and verified using a level 3 simulation approach.