• Title/Summary/Keyword: Dynamic resistance loss

Search Result 67, Processing Time 0.022 seconds

Enhancing the Blast Resistance of Structures Using HPFRCC, Segmented Composites, and FRP Composites (HPFRCC, 분절 복합체 및 FRP를 활용한 구조물의 내폭 성능 향상)

  • Yoon, Young-Soo;Yang, Jun-Mo;Min, Kyung-Hwan;Shin, Hyun-Oh
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.745-748
    • /
    • 2008
  • The past structures were just required bearing capacity to service load, serviceability, and resistance to corrosion. However this point of view has changed after 9.11 terrorism, capacities which can bear impact loading by explosion, and heat by fire happening at the same time, become to be important as a basic condition. The blast resistance capacity of structures is very important part against all over the world is intimidated by terrorism everyday in current point of time. The target of this research is a development of segmented composites and layered structures with high blast resistance using cementitious composites, concrete and FRP composites, which has high tensile strength and ductility, to apply in not only existing facilities but also new ones. Through the improvement of blast resistance, casualties and economic loss can be minimized, and it is possible to diminish the structure collapse and delay the time of structure collapse by thermal effect, impact loading, dynamic loading and high strain.

  • PDF

Development of a programming logic to estimate the wall friction coefficient in vehicle tunnels with piston effects (교통환기력이 작용하는 터널 내 벽면마찰계수 추정을 위한 프로그램 로직 개발)

  • Kim, Hyo-Gyu;Choi, Pan-Gyu;Ryu, Ji-Oh;Lee, Young-Hoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.1
    • /
    • pp.39-53
    • /
    • 2018
  • Generally, the total ventilation resistance coefficient in a tunnel consists of inlet/outlet loss coefficient, wall friction coefficient, and other loss coefficient caused by sudden expansion and contraction of cross-section, etc. For the tunnel before opening, when the running ventilation fan is stopped, the wind speed in the tunnel is reduced by the total ventilation resistance drag. The velocity decay method is comparatively stable and easy to estimate the wall friction coefficient in the pre-opening tunnel. However, the existing study reported that when the converging wind speed is a negative value after the ventilation fan stops, it is difficult to estimate the wall friction coefficient according to the velocity decay method. On the other hand, for the operating tunnel in which the piston effect acts, a more complex process is performed; however, a reasonable wall friction coefficient can be estimated. This paper aims at suggesting a method to minimize the measurement variables of the piston effect and reviewing a method that can be applied to the operating tunnel. Also, in this study, a new method has been developed, which enables to calculate an variation of the piston effect if the piston effect is constant with a sudden change of external natural wind occurring while the wind speed in the tunnel decreases after the ventilation fan stops, and a programming logic has been also developed, which enables dynamic simulation analysis in order to estimate the wall friction coefficient in a tunnel.

Progressive collapse resistance of low and mid-rise RC mercantile buildings subjected to a column failure

  • Demir, Aydin
    • Structural Engineering and Mechanics
    • /
    • v.83 no.4
    • /
    • pp.563-576
    • /
    • 2022
  • This study aimed to evaluate the progressive collapse potential of buildings designed using conventional design codes for the merchant occupancy classification and subjected to a sudden column failure. For this purpose, three reinforced concrete buildings having different story numbers were designed according to the seismic design recommendations of TSCB-2019. Later on, the buildings were analyzed using the GSA-2016 and UFC 4-023-03 to observe their progressive collapse responses. Three columns were removed independently in the structures from different locations. Nonlinear dynamic analysis method for the alternate path direct design approach was implemented for the design evaluation. The plasticity of the structural members was simulated by using nonlinear fiber hinges. The moment, axial, and shear force interaction on the hinges was considered by the Modified Compression Field Theory. Moreover, an existing experimental study investigating the progressive collapse behavior of reinforced concrete structures was used to observe the validation of nonlinear fiber hinges and the applied analysis methodology. The study results deduce that a limited local collapse disproportionately more extensive than the initial failure was experienced on the buildings designed according to TSCB-2019. The mercantile structures designed according to current seismic codes require additional direct design considerations to improve their progressive collapse resistance against the risk of a sudden column loss.

AN EVALUATION OF THE APERIODIC AND FLUCTUATING INSTABILITIES FOR THE PASSIVE RESIDUAL HEAT REMOVAL SYSTEM OF AN INTEGRAL REACTOR

  • Kang Han-Ok;Lee Yong-Ho;Yoon Ju-Hyeon
    • Nuclear Engineering and Technology
    • /
    • v.38 no.4
    • /
    • pp.343-352
    • /
    • 2006
  • Convenient analytical tools for evaluation of the aperiodic and the fluctuating instabilities of the passive residual heat removal system (PRHRS) of an integral reactor are developed and results are discussed from the viewpoint of the system design. First, a static model for the aperiodic instability using the system hydraulic loss relation and the downcomer feedwater heating equations is developed. The calculated hydraulic relation between the pressure drop and the feedwater flow rate shows that several static states can exist with various numbers of water-mode feedwater module pipes. It is shown that the most probable state can exist by basic physical reasoning, that there is no flow rate through the steam-mode feedwater module pipes. Second, a dynamic model for the fluctuating instability due to steam generation retardation in the steam generator and the dynamic interaction of two compressible volumes, that is, the steam volume of the main steam pipe lines and the gas volume of the compensating tank is formulated and the D-decomposition method is applied after linearization of the governing equations. The results show that the PRHRS becomes stabilized with a smaller volume compensating tank, a larger volume steam space and higher hydraulic resistance of the path $a_{ct}$. Increasing the operating steam pressure has a stabilizing effect. The analytical model and the results obtained from this study will be utilized for PRHRS performance improvement.

Numerical study on tensioned membrane structures under impact load

  • Zhang, Yingying;Zhao, Yushuai;Zhang, Mingyue;Zhou, Yi;Zhang, Qilin
    • Structural Engineering and Mechanics
    • /
    • v.71 no.2
    • /
    • pp.109-118
    • /
    • 2019
  • This paper presents the numerical simulation of membrane structure under impact load. Firstly, the numerical simulation model is validated by comparing with the test in Hao's research. Then, the effects of the shape of the projectile, the membrane prestress and the initial impact speed, are investigated for studying the dynamic response and failure mechanism, based on the membrane displacement, projectile acceleration and kinetic energy. Finally, the results show that the initial speed and the punch shape are related with the loss of kinetic energy of projectiles. Meanwhile, the membrane prestress is an important factor that affects the energy dissipation capacity and the impact resistance of membrane structures.

Effects of treadmill exercise on the regulatory mechanisms of mitochondrial dynamics and oxidative stress in the brains of high-fat diet fed rats

  • Koo, Jung-Hoon;Kang, Eun-Bum
    • Korean Journal of Exercise Nutrition
    • /
    • v.23 no.1
    • /
    • pp.28-35
    • /
    • 2019
  • [Purpose] The purpose of this study was to investigate the effects of treadmill exercise on oxidative stress in the hippocampal tissue and mitochondrial dynamic-related proteins in rats fed a long-term high-fat diet (HFD). [Methods] Obesity was induced in experimental animals using high fat feed, and the experimental groups were divided into a normal diet-control (ND-CON; n=12), a high fat diet-control (HFD-CON; n=12) and a high fat diet-treadmill exercise (HFD-TE; n=12) group. The rats were subsequently subjected to treadmill exercise (progressively increasing load intensity) for 8 weeks (5 min at 8 m/min, then 5 min at 11 m/min, and finally 20 min at 14 m/min). We assessed weight, triglyceride (TG) concentration, total cholesterol (TC), area under the curve, homeostatic model assessment of insulin resistance, and AVF/body weight. Western blotting was used to examine expression of proteins related to oxidative stress and mitochondrial dynamics, and immunohistochemistry was performed to examine the immunoreactivity of gp91phox. [Results] Treadmill exercise effectively improved the oxidative stress in the hippocampal tissue, expression of mitochondrial dynamic-related proteins, and activation of NADPH oxidase (gp91phox) and induced weight, blood profile, and abdominal fat loss. [Conclusion] Twenty weeks of high fat diet induced obesity, which was shown to inhibit normal mitochondria fusion and fission functions in hippocampal tissues. However, treadmill exercise was shown to have positive effects on these pathophysiological phenomena. Therefore, treadmill exercise should be considered during prevention and treatment of obesity-induced metabolic diseases.

Engineering Properties of Semi-rigid Pavement Material Produced with Sulfur Polymer Emulsion and Reinforcing Fibers (Sulfur Polymer Emulsion 및 보강용 섬유를 활용한 반강성 포장재의 공학적 특성)

  • Lee, Byung-Jae;Seo, Ji-Seok;Noh, Jae-Ho;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.1
    • /
    • pp.119-127
    • /
    • 2014
  • The application of sulfur polymer emulsion (SPE) as an acrylate substitute for semi-rigid pavement grout was evaluated, and the performance improvement by employing PVA fibers were also evaluated. The result indicated that the filling ratio of semi-rigid pavement material decreased as the fiber content increased, but it was measured to be 92~94% in every mixing condition, which satisfies the target performance, 90%. The maximum Marshall stability value of semi-rigid pavement material was measured to be 25.4 kN, which is about 4.7 times higher than the Korean Standard required for semi-rigid pavement material, 5.0 kN. The dynamic stability evaluation of semi-rigid pavement material indicated that the resistance to deformation from the wheel tracking test was improved by an SPE substitution, and in every mixing condition, the deformation converged to a constant value after 45 minutes with the same dynamic stability of 31,500 times/mm. The strain at the flexural failure was about 0.53%, which shows superior rigidity to asphalt pavements. The examination of abrasion resistance and impact resistance showed that the loss ratio was 9.8~6.0% in every mixing condition, which indicates a good abrasion resistance. Also, when fiber content ratio was 0.3%, the impact resistance was 2.82 times higher compared to plain (i.e., when fibers were not added). In the limited range of this study, an SPE substitution ratio of 30% was found to be an optimal level considering the mechanical and durability performance. In addition, it is thought that semi-rigid pavement material with superior performance could be manufactured if fiber content ratio up to 0.3% is applied depending on the purpose of use.

Preparation of Silica-Filled SBR Compounds with Low Rolling Resistance by Wet Masterbatch

  • Yang, Jae-Kyoung;Park, Wonhyeong;Ryu, Changseok;Kim, Sun Jung;Kim, Doil;Seo, Gon
    • Elastomers and Composites
    • /
    • v.55 no.1
    • /
    • pp.26-39
    • /
    • 2020
  • The physical properties of silica-filled SBR compounds (WSBR) prepared using silica-SBR wet masterbatches (WMB) were systematically investigated to understand the effect of the surface treatment of silica on the reinforcement performance of SBR. Treatment of silica with bis(triethoxysilylpropyl)tetrasulfide (TESPT) in the liquid phase, followed by mixing with an SBR solution and recovery by water stripping, easily produced silica-SBR WMB. However, insufficient surface treatment in terms of the amount and stability of the incorporated TESPT led to considerable silica loss and inevitable TESPT elution. Pretreatment of silica in the gas phase with TESPT and another organic material that enabled the formation of organic networks among the silica particles on the surface provided hydrophobated silica, which could be used to produce silica-SBR WMB, in high yields of above 99%. The amount and type of organic material incorporated into silica greatly influenced the cure characteristics, processability, and tensile and dynamic properties of the WSBR compounds. The TESPT and organic material stably incorporated into silica increased their viscosity, while the organic networks dispersed on the silica surface were highly beneficial for reducing their rolling resistance. Excessive dosing of TESTP induced low viscosity and a high modulus. The presence of connection bonds formed by the reaction of glycidyloxy groups with amine groups on the silica surface resulted in physical entanglement of the rubber chains with the bonds in the WSBR compounds, leading to low rolling resistance without sacrificing the mechanical properties. Mixing of the hydrophobated silica with a rubber solution in the liquid phase improved the silica dispersion of WSBR compounds, as confirmed by their low Payne effect, and preservation of the low modulus enhanced the degree of entanglement.

A design of the high efficiency PMIC with DT-CMOS switch for portable application (DT-CMOS 스위치를 사용한 휴대기기용 고효율 전원제어부 설계)

  • Ha, Ka-San;Lee, Kang-Yoon;Ha, Jae-Hwan;Ju, Hwan-Kyu;Koo, Yong-Seo
    • Journal of IKEEE
    • /
    • v.13 no.2
    • /
    • pp.208-215
    • /
    • 2009
  • The high efficiency power management IC(PMIC) with DT-CMOS(Dynamic Threshold voltage MOSFET) switching device for portable application is proposed in this paper. Because portable applications need high output voltages and low output voltage, Boost converter and Buck converter are embedded in One-chip. PMIC is controlled with PWM control method in order to have high power efficiency at high current level. DTMOS with low on-resistance is designed to decrease conduction loss. Boost converter and Buck converter, are based on Voltage-mode PWM control circuits and low on-resistance switching device, achieved the high efficiency near 92.1% and 95%, respectively, at 100mA output current. And Step-down DC-DC converter in stand-by mode below 1mA is designed with LDO in order to achive high efficiency.

  • PDF

Evaluation Concept of Progressive Collapse Sensitivity of Steel Moment Frame using Energy-based Approximate Analysis (에너지 기반 근사해석을 이용한 철골모멘트골조의 연쇄붕괴 민감도 평가방법)

  • Noh, Sam-Young;Park, Ki-Hwan;Lee, Sang-Yun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.5
    • /
    • pp.108-116
    • /
    • 2017
  • In this study, the prototype structure of seismically designed steel moment frame was analyzed statically and dynamically in order to demonstrate the applicability of energy-based approximate analysis with the dynamic effect of sudden column loss in the evaluation of the collapse resistance and a method for assessing the sensitivity to progressive collapse was proposed. For the purpose of comparing the structural behavior of buildings with different structural systems, the sensitivity of the structure to the sudden removal of vertical members can be used as a significant measure. The energy-based approximate analysis prediction for the prototype structure considered in the study showed good agreement with the dynamic analysis result. In the sensitivity evaluation, the structural robustness index that indicates the ability of a structure to resist collapse induced by abnormal loads was used. It was confirmed that the proposed methods can be used conveniently and rationally in progressive collapse analysis and design.