• Title/Summary/Keyword: Dynamic power cable

Search Result 59, Processing Time 0.026 seconds

A study on new development of Power Cable for countermeasuring of IEC801-4 (EFT IEC801-4 대책용 Power Cable 개발에 관한 연구)

  • 배대환
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1995.04a
    • /
    • pp.109-116
    • /
    • 1995
  • 프로세서 제어기기에서 오동작의 주요원인은 EFT로 국제전기기술위원회 (IEC)는 EFT에 대한 내성을 평가하기 위해 의사적인 신호를 규정하고 프로세서 제어기기의 내성을 시험하도록 권고하고 있다 본 논문에서는 IEC에서 규정한 의사 EFT신호를 Frequency domain에서 분석하고 이에 대한 대책용 부품개발에 대한 연구를 수행하였다 대책용 부품의 구성은 전원코드의 입력측에 관통형 컨덴서를 Cy 형태로 취부하고 전선자체에는 CM성분의 임피던스를 높이기 위해 고투자율 재료를 전선의 2차피복에 혼합하거나 감는 구조로 되어있다 그리고 전선자체에 CM성분의 임피던스를 높이는 고토자율 재료 대신에 Permalloy를 취부하여 비교하였다 측정 결과 개발된 전원코드는 EFT신호에 대해 넓은 주파수 대역에 걸쳐 매우 우수한 감쇠특성을 가지는 것이 확인되었다 특히 컴퓨터를 피즉정물로 하여 즉청한 dynamic 특성은 3.6Kv까지 견디는 우수한 특성을 나타내었다. 고안된 전원 케이블의 응용범위는 산업용 설비외에도 군용기기 의료기기등의 정상적인 동작확보에 사용될 수 있을 것이다 뿐만 아니라 사용방버에 따라 전원성을 통해 방사되는 EMI중 대책이 어려운 60MH이상 수GHz 대역의 발생전자파 대책에 좋은 특성을 가질 것으로 판단되면며 부품의 선택방법에 따라 EFT의에 IEC801-2,3,5,6, 모든 내성시험 항목에 효과가 기대된다.

  • PDF

Seismic mitigation of substation cable connected equipment using friction pendulum systems

  • Karami-Mohammadi, Reza;Mirtaheri, Masoud;Salkhordeh, Mojtaba;Mosaffa, Erfan;Mahdavi, Golsa;Hariri-Ardebili, Mohammad Amin
    • Structural Engineering and Mechanics
    • /
    • v.72 no.6
    • /
    • pp.785-796
    • /
    • 2019
  • Power transmission substations are susceptible to potential damage under seismic excitations. Two of the major seismic failure modes in substation supplies are: the breakage of brittle insulator, and conductor end fittings. This paper presents efficient isolation strategies for seismically strengthening of a two-item set of equipment including capacitive voltage transformer (CVT) adjacent to a Lightning Arrester (LA). Two different strategies are proposed, Case A: implementation of base isolation at the base of the CVT, while the LA is kept fixed-base, and Case B: implementation of base isolation at the base of the LA, while the CVT is kept fixed-base. Both CVT and LA are connected to each other using a cable during the dynamic excitation. The probabilistic seismic behavior is measured by Incremental Dynamic Analysis (IDA), and a series of appropriate damage states are proposed. Finally, the fragility curves are derived for both the systems. It is found that Friction Pendulum System (FPS) isolator has the potential of decreasing flexural stresses caused by intense ground motions. The research has shown that when the FPS is placed under LA, i.e. Case B (as oppose to Case A), the efficiency of the system is improved in terms of reducing the forces and stresses at the bottom of the porcelain. Several parametric studies are also performed to determine the optimum physical properties of the FPS.

A study on the Dynamic Mechanical and Dielectric Loss according to Quenched Condition in Low Density Polyethylene fer Power Cable (전력 케이블용 저밀도 폴리에틸렌의 냉각 조건에 따른 기계적 및 유전손실에 관한 연구)

  • 김재환;권병휘;박재준
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.6 no.5
    • /
    • pp.27-37
    • /
    • 1992
  • We studied the dielectric and dynamic mechanical losses according to the quenching condition in low density polyethylene being used to power cables. According to severe quenching condition, characteristics of the temperature in internal friction los peak have decreased the magnitude of loss peak as amorphous region lengthen. From now on, the frequency dependent characteristics of dielectric loss have investigated at room temperature, and the dielectric loss peak due to interface polarization, between crystal and amorphous region, occurs about 30[Hz], and that, the peak due to orientation polarization in correspondence to the loss peak in internal friction has observed at about 3 [MHz]. As quenching velocity increased, the effect on quenching condition about the dielectric loss has decreased the magnitude of the loss peak. Thus, estimation has been carried out on the activation energies nd the degree of crystallinity by means of X-ray diffraction are obtained as follows: room quenching : 26.4 [kal/mole] and 54.73 [%], ice quenching : 25.6 [kcal/mole] and 48.47 [%], liquid nitrogen quenching specimens : 22.56 [kcal/mole] and 40.95 [%].

  • PDF

A Study on the Thermal and Chemical Properties of Carbon Nanotube Reinforced Nanocomposite in Power Cables

  • Yang, Sang-Hyun;Jang, Hyeok-Jin;Park, Noh-Joon;Park, Dae-Hee;Yang, Hoon;Bang, Jeong-Hwan
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.6
    • /
    • pp.217-221
    • /
    • 2009
  • The use of the carbon nanotube (CNT) is superior to the general powder state materials in their thermal and chemical properties. Because its ratio of diameter to length (aspect ratio) is very large, it is known to be a type of ideal nano-reinforcement material. Based on this advantage, the existing carbon black of the semiconductive shield materials used in power cables can acquire excellent properties by the use of a small amount of CNTs. Therefore, we fabricated specimens using a solution mixing method. We investigated the thermal properties of the CNT, such as its storage modulus, loss modulus, and its tan delta using a dynamic mechanical analysis 2980. We found that a high thermal resistance level is demonstrated by using a small amount of CNTs. We also investigated the chemical properties of the CNT, such as the oxidation reaction by using Fourier transform infrared spectroscopy (FT-IR) made by Travel IR. In the case of the FT-IR tests, we searched for some degree of oxidation by detecting the carboxyl group (C=O). The results confirm a tendency for a high cross-linking density in a new network in which the CNTs situated between the carbon black constituent molecules show a bond using similar constructive properties.

A Study on the Flight Vibration Environmental Specification of Unmanned Flying Vehicle using Random Vibration Test and Analysis Methods (랜덤 진동 시험 및 해석 기법을 이용한 무인 비행체의 비행 진동 환경 규격 연구)

  • Jangseob, Choi;Dongho, Oh
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.6
    • /
    • pp.596-605
    • /
    • 2022
  • In this study, analysis of dynamic characteristics and flight vibration was performed to unmanned aerial vehicles. The analysis model was supplemented by performing a dynamic characteristic test and a random vibration test using manufactured dummy aerial vehicle. For the dynamic characteristic test, a bungee cable was used to implement the free end boundary condition. Prior to the flight vibration test using a multiple electric shaker, a random vibration test was performed to predict the excitation force during the actual flight vibration test. It was judged that the actual test could be predicted more accurately by supplementing the analysis model from the test results. In addition, it was possible to determine the feasibility of the test by predicting the excitation force of the flight vibration test.

AC loss analysis and experimental evaluation of a high temperature superconductor (고온초전도선재의 교류손실 해석 및 실험)

  • Ryu, Kyung-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2001.11b
    • /
    • pp.96-100
    • /
    • 2001
  • Bi-2223 tapes have been developed for low-field power applications at liquid nitrogen temperature. When the Bi-2223 tapes are used in an application such as a power transmission cable or a power transformer, they are supplied with an AC transport current and exposed to an external magnetic field generated by neighboring tape's AC currents simultaneously. AC loss taking into account such real applications is a crucial issue for power applications of the Bi-2223 tapes to be feasible. In this paper, the transport losses for different AC current levels and arrangements of the neighboring tapes have been measured in a 1.5 m long Bi-2223 tape. The significant increase of the transport losses due to neighboring tape's AC currents is observed. An increase of the transport losses caused by a decrease of the Bi-2223 tape's critical current is a minor effect. The measured transport losses could not be explained by a dynamic resistance loss based on DC voltage-current characteristics in combination with the neighboring tape's AC currents. The transport losses do not depend on the frequency of the neighboring tape's AC currents but its arrangements in the range of small current especially.

  • PDF

A study on response analysis of submerged floating tunnel with linear and nonlinear cables

  • Yarramsetty, Poorna Chandra Rao;Domala, Vamshikrishna;Poluraju, P.;Sharma, R.
    • Ocean Systems Engineering
    • /
    • v.9 no.3
    • /
    • pp.219-240
    • /
    • 2019
  • This paper presents the comparison between SFT response with linear and nonlinear cables. The dynamic response analysis of submerged floating tunnel (SFT) is presented computationally with linear and nonlinear tension legs cables. The analysis is performed computationally for two wave directions one at 90 degrees (perpendicular) to tunnel and other at 45 degrees to the tunnel. The tension legs or cables are assumed as linear and non- linear and the analysis is also performed by assuming one tension leg or cable is failed. The Response Amplitude Operators (RAO's) are computed for first order waves, second order waves for both failure and non-failure case of cables. For first order waves- the SFT response is higher for sway and heave degree of freedom with nonlinear cables as compared with linear cables. For second order waves the SFT response in sway degree of freedom is bit higher response with linear cables as compared with nonlinear cables and the SFT in heave degree of freedom has higher response at low time periods with nonlinear cables as compared with linear cables. For irregular waves the power spectral densities (PSD's) has been computed for sway and heave degrees of freedom, at $45^0$ wave direction PSD's are higher with linear cables as compared with nonlinear cables and at $90^0$ wave direction the PSD's are higher with non-linear cables. The mooring force responses are also computed in y and z directions for linear and nonlinear cables.

A Study on the Noise and Vibration Transmission Path of Rolling Pistion Type Rotary Compressor Using SEA (통계적 에너지 해석 기법에 의한 공조용 로타리 압축기의 소음 진동 전달 경로 해석)

  • Hwang, Seon-Woong;Jeong, Hyeon-Chul;Ahn, Byung-Ha;Jeong, Weui-bong;Kim, Kyu-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.385.2-385
    • /
    • 2002
  • Hermetic rotary compressor is one of the most important components for air conditioning system since it has a great effect on both the performance and the noise and vibration of the system. Noise and vibration of rotary compressor is occurred due to gas pulsation during compression process and unbalanced dynamic force. In order to reduce noise and vibration, it is necessary to identify sources of noise and vibration and effectively control them. (omitted)

  • PDF

A Study on the Arc Characteristics in Butt Joint P-GMA Welding with Acute Groove Angles (작은 그루브 각을 가지는 맞대기 P-GMA 용접에서의 용접아크에 관한 연구)

  • Kim, Ryoon-Han;Na, Suck-Joo;Kim, Cheol-Hee
    • Proceedings of the KWS Conference
    • /
    • 2010.05a
    • /
    • pp.53-53
    • /
    • 2010
  • The purpose of this paper is to propose a mathematical model of welding current for the P-GMAW by modifying the well known GMAW model. Welding power circuit is simply modeled as a RL electric circuit and solved as an ODE equation. The welding current depends on the joint shape, molten pool and welding parameters. To compare the molten pool effect to the welding current, CFD numerical simulation technique was adopted. Welding experiment is also conducted with the same welding parameters as used in numerical simulations to verify the proposed welding current model. The current model which is considered molten pool shape, is more fit to experiment result.

  • PDF

A Study on the Welding Current in Butt Joint P-GMA Welding with Acute Groove Angles (작은 그루브 각을 가지는 맞대기 P-GMA 용접에서의 용접전류에 관한 연구)

  • Kim, Ryoon-Han;Na, Suck-Joo;Kim, Cheol-Hee
    • Journal of Welding and Joining
    • /
    • v.28 no.4
    • /
    • pp.55-60
    • /
    • 2010
  • The purpose of this paper is to propose a mathematical model of welding current for the P-GMAW by modifying the well known GMAW model. Welding power circuit is simply modeled as a RL electric circuit and solved as an ODE equation. The welding current depends on the joint shape, molten pool and welding parameters. To compare the molten pool effect to the welding current, CFD numerical simulation technique was adopted. Welding experiment is also conducted with the same welding parameters as used in numerical simulations to verify the proposed welding current model. The current model which is considered molten pool shape, is more fit to experiment result.