• Title/Summary/Keyword: Dynamic positioning system

Search Result 277, Processing Time 0.024 seconds

Performance analysis of dynamic positioning system with loss of propulsion power of T/S NARA (실습선 나라호의 추진력 상실에 따른 동적위치제어시스템의 성능 분석)

  • LEE, Jun-Ho;KONG, Kyeong-Ju;JUNG, Bong-Kyu
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.54 no.2
    • /
    • pp.181-187
    • /
    • 2018
  • In order for the probe to perform ocean exploration and survey research, it is necessary to adjust the position of the ship as desired by dynamic positioning system. The dynamic positioning system of T/S NARA is applied to K-POS dynamic positioning system of Kongsberg, which makes maintaining the ship's position, changing position and heading control possible. T/S NARA is not capable of dynamic positioning if one or more propulsive forces are lost with DP Level One. However, it is predicted that dynamic positioning can be achieved even at the time of missing one thrust in a good sea condition. Therefore, we want to analyze the effect of each propulsion on the performance of dynamic position system. When one of the bow thruster and azimuth thrusters lost their propulsion, maintaining the ship's position, changing position and heading control performance were compared and analyzed. If the situation occurred disable from using the bow thruster, they can not maintain ship's position. Azimuth thruster was influential for the ship's position control and bow thruster was influential in heading control. The excellent dynamic positioning performance can be achieved, considering the propulsion power that will have a impact on each situation in the future.

Experimental Study on Dynamic Positioning Contol of a Semi-Submergible Platform (반잠수식 해양구조물의 동위치제어에 관한 실험적 연구)

  • 김성근;유휘룡;김상봉
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.661-669
    • /
    • 1995
  • This paper presents a design method of dynamic positioning control system in view ofpractical design concept for reliability and robust realization. This method adopts a design method of multivariable robust servo system. The practical experiments of the dynamic positioning control were carried out for a semi-submersible 2-lower hull type platform model with 4 rotatable thrusters in a small water tank. The results fo overall experiment show that the proposed position control method will be an efficient method to the better control performance of dynamic positioning system under serere environment and it is substentially practicable for the platform.

High Speed Positioning of a Pneumatic Control System with a $H_{\infty}$ Controller ($H_{\infty}$ 제어기를 이용한 공기압 구동시스템의 위치제어 성능 향상에 관한 연구)

  • Jang, J.S.
    • Journal of Power System Engineering
    • /
    • v.2 no.2
    • /
    • pp.67-72
    • /
    • 1998
  • To improve control performance, especially positioning speed, of a pneumatic positioning system, dynamic characteristics of a control valve should be considered. In case we design controller including dynamic characteristics of a control valve, it's not easy to design controller gain using simple state feedback because degree of a control system is increased. This study designed controller using loop shaping of $H_{\infty}$ control theory for a model composed of a pneumatic actuator and a control valve, and positioning experiment using this controller was performed. As a result, it was verified that the controller is useful for high speed positioning of a pneumatic positioning system.

  • PDF

An alternative portable dynamic positioning system on a barge in short-crested waves using the fuzzy control

  • Fang, Ming-Chung;Lee, Zi-Yi
    • Ocean Systems Engineering
    • /
    • v.5 no.3
    • /
    • pp.199-220
    • /
    • 2015
  • The paper described the nonlinear dynamic motion behavior of a barge equipped with the portable outboard Dynamic Positioning(DP) control system in short-crested waves. The DP system based on the fuzzy theory is applied to control the thrusters to optimally adjust the ship position and heading in waves. In addition to the short-crested waves, the current, wind and nonlinear drifting force are also included in the calculations. The time domain simulations for the six degrees of freedom motions of the barge with the DP system are solved by the $4^{th}$ order Runge-Kutta method. The results show that the position and heading deviations are limited within acceptable ranges based on the present control method. When the dynamic positioning missions are needed, the technique of the alternative portable DP system developed here can serve as a practical tool to assist those ships without equipping with the DP facility.

A Study on the Feedforward Control Algorithm for Dynamic Positioning System Using Ship Motion Prediction (선체운동 예측을 이용한 Dynamic Positioning System의 피드포워드 제어 알고리즘에 관한 연구)

  • Song, Soon-Seok;Kim, Sang-Hyun;Kim, Hee-Su;Jeon, Ma-Ro
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.1
    • /
    • pp.129-137
    • /
    • 2016
  • In the present study we verified performance of feed-forward control algorithm using short term prediction of ship motion information by taking advantage of developed numerical simulation model of FPSO motion. Up until now, various studies have been conducted about thrust control and allocation for dynamic positioning systems maintaining positions of ships or marine structures in diverse sea environmental conditions. In the existing studies, however, the dynamic positioning systems consist of only feedback control gains using a motion of vessel derived from environmental loads such as current, wind and wave. This study addresses dynamic positioning systems which have feedforward control gain derived from forecasted value of a motion of vessel occurred by current, wind and wave force. In this study, the future motion of vessel is forecasted via Brown's Exponential Smoothing after calculating the vessel motion via a selected mathematical model, and the control force for maintaining the position and heading angle of a vessel is decided by the feedback controller and the feedforward controller using PID theory and forecasted vessel motion respectively. For the allocation of thrusts, the Lagrange Multiplier Method is exploited. By constructing a simulation code for a dynamic positioning system of FPSO, the performance of feedforward control system which has feedback controller and feedforward controller was assessed. According to the result of this study, in case of using feedforward control system, it shows smaller maximum thrust power than using conventional feedback control system.

SYSTEM ARCHITECTURE OF THE TELEMATICS POSITIONING TESTBED

  • Kim, Young-Min;Kim, Bong-Soo;Choi, Wan-Sik
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.349-352
    • /
    • 2005
  • The telematics positioning testbed is an infrastructure to test and verify positioning technology, the sub-component of telernatics system. The positioning testbed provides the environment of performance analysis for acquisition of static and dynamic positioning information using telematics vehicle. This testbed consists of onboard positioning system, positioning reference station and lab positioning server. The onboard positioning system equipped in telematics vehicle, consists of target positioning system, reference positioning system, and analysis tool. A equipment acquiring high precision positioning data obtained from GPS combined with IMU was set as a reference positioning system. Analysis tool compares observed positioning data with high precision positioning information from a reference positioning system, and processes positioning information. Positioning reference station is RTK system used for reducing atmosphere error, and it transmits corrected information to reference positioning system. Positioning server which is located at laboratory manages positioning database and provides monitoring data to integrated testbed operating system. It is expected that the testbed supports commercialization of telernatics technology and services, integrated testing among component technology and verification.

  • PDF

Analysis on Application of Flywheel Energy Storage System for offshore plants with Dynamic Positioning System

  • Jeong, Hyun-Woo;Kim, Yoon-Sik;Kim, Chul-Ho;Choi, Sung-Hwan;Yoon, Kyoung-Kuk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.7
    • /
    • pp.935-941
    • /
    • 2012
  • This paper describes a study of conventional electrical rig and simulated application of Flywheel Energy Storage system on the power system of the offshore plants with dynamic positioning system with the following aims: improve fuel consumption on engines, prevent blackout and mitigate voltage sags due to pulsed load and fault. Fuel consumption has been analyzed for the generators of the typical drilling rigs compared with the power plant with Flywheel Storage Unit which has an important aid in avoiding power interruption during DP (Dynamic Positioning) operation. The FES (Fly wheel Energy storage System) releases energy very quickly and efficiently to ensure continuity of the power supply to essential consumers such as auxiliary machinery and thrusters upon main power failure. It will run until the standby diesel generator can start and supply the electric power to the facilities to keep the vessel in correct position under DP operation. The proposed backup method to utilize the quick and large energy storage Flywheel system can be optimized in any power system design on offshore plant.

Application of neuro-fuzzy algorithm to portable dynamic positioning control system for ships

  • Fang, Ming-Chung;Lee, Zi-Yi
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.1
    • /
    • pp.38-52
    • /
    • 2016
  • This paper describes the nonlinear dynamic motion behavior of a ship equipped with a portable dynamic positioning (DP) control system, under external forces. The waves, current, wind, and drifting forces were considered in the calculations. A self-tuning controller based on a neuro-fuzzy algorithm was used to control the rotation speed of the outboard thrusters for the optimal adjustment of the ship position and heading and for path tracking. Time-domain simulations for ship motion with six degrees of freedom with the DP system were performed using the fourth-order RungeeKutta method. The results showed that the path and heading deviations were within acceptable ranges for the control method used. The portable DP system is a practical alternative for ships lacking professional DP facilities.

A Study on the Development of Dynamic Positioning System for Barge Type Surface Vessels (Barge 형 수상선의 DP(Dynamic Positioning) System 개발에 관한 연구)

  • Bui, Van-Phuoc;Kim, Young-Bok
    • Journal of Power System Engineering
    • /
    • v.16 no.2
    • /
    • pp.66-74
    • /
    • 2012
  • In this paper, the authors propose a new approach to control a barge type surface vessel. It is based on the Dynamic Positioning System(DPS) design. The main role of barge ship is to carry and supply the materials to the floating units and other places. To carry out this job, it should be positioned in the specified area. However sometimes the thrust systems are installed on it, and in general the rope control by mooring winch system is used. It may be difficult to compare the control performances of two types. If we consider this problem in point of usefulness, we can easily find out that the winch control system is more useful and applicable to the real field than the thrust control system except a special use. Therefore, in this paper we consider a DPS design problem which can be extended to the many application fields. The goal of this paper is twofold. First, the sliding mode controller (SMC) for positioning the our vessel is proposed. Especially, in this paper, a robust stability condition is given based on descriptor system representation. In the result, the sliding mode control law guarantees to keep the vessel in the defined area in the presence of environmental disturbances. And second, the thrust allocation problem is solved by using redistributed pseudo-inverse (RPI) algorithm to determine the thrust force and direction of each individual actuator. The proposed approach has been simulated with a supply vessel model and found work well.

A Study on the Design Parameters of Controller for Dynamic Positioning System (자기위치 유지시스템 제어기의 설계변수에 관한 연구)

  • 이동연;하문근
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.1
    • /
    • pp.8-19
    • /
    • 2003
  • Special purpose vessels such as drillship and ocean research vessels install the DPS(Dynamic Positioning System) to maintain the position and heading for long-time operation. This paper deals with the design parameters for the control theory and filter algorithms of DP system. for the environmental loadings wind forces, current forces and wave forces were considered. In order to estimate the low frequency motions without first-order wave motion, the Kalman filter was used and it was assumed that the first-order wave forces correspond to system noises and first-order wave motions are measurement noises. In this simulation, the length of research vessel is 65 meters and it has four thrusters to maintain the position. The ability of keeping position and heading was confirmed. For the calculation of thruster input the LQR and LOI control theory were adopted and the effects of gain were investigated.