• Title/Summary/Keyword: Dynamic phantom

Search Result 89, Processing Time 0.027 seconds

The Study of Standardization of Temperature Distribution of Interstitial Hyperthermia -In Phantoms and Living cat's brain tissue (Normal Tissue)- (915 MHz 극초단파 자입온열시 온도분포 적정화에 관한 연구 -조직등가물 및 가묘대뇌를 대상으로-)

  • Kyoung Hwan Koh;Cho Chul Koo;Park Young Hwan;Yoo Seong Yul;Kim Jong Hyun;Lee Seung Hoon
    • Radiation Oncology Journal
    • /
    • v.8 no.1
    • /
    • pp.7-15
    • /
    • 1990
  • The ultimate objective of our experiment is to obtain the precise distribution of temperature in malignant tumors occurring in cerebral parenchyme of human beings when we will carry out interstitial hyperthermia in the near future. To achieve this purpose, first of all, it is necessary to make an attempt at performing interstitial hyperthermia in vivo under the similar condition of human beings. Therefore, we chose cats as materials much alike tissue characteristics of human beings. Moreover, it is also necessary to get the basic data from dynamic phantom in order to standardize and compare results obtained from interstitial hyperthermia carried out in cats. By having performed these experiments we got the following results. 1) On doing interstitial hyperthermia with 915 MHz microwave, the possible treated volume was 2 cm by 2 cm by 6 cm according to $50\%$ specific absorption rate (SAR). 2) The distribution of temperature within non-circulated static phantom was much the same as power density in air, but we observed that the temperature, within $5\~10$ minutes, rose to more higher than $55^{\circ}C$ not measured with Ga-As fiberoptic thermistor which was not impeded by microwave after performing interstitial hyperthermia. 3) Within dynamic phantom in which normal saline was circulating, temperature reached steady state which was maintained for more than 45 minutes through transit period in 5 minutes after starting interstitial hyperthermia. 4) When we interrupted circulation in the dynamic phantom, we observed that temperature rose to the same level as in the static phantom. 5) We could carry out interstitial hyperthermia safely when we used the generating power below 5 watts. Abrupt interruption of circulation caused a rapid increase in temperature. Times taking to rise to maximum $55^{\circ}C$ were 15.2 minutes (SE 0.4),9.7 minutes (SE 0.3), and 6.3 min-utes (SE 0.4) respectively with generating powers of 5,10, and 15 watts.

  • PDF

Practical Virtual Compensator Design with Dynamic Multi-Leaf Collimator(dMLC) from Iso-Dose Distribution

  • Song, Ju-Young;Suh, Tae-Suk;Lee, Hyung-Koo;Choe, Bo-Young;Ahn, Seung-Do;Park, Eun-Kyung;Kim, Jong-Hoon;Lee, Sang-Wook;Yi, Byong-Yong
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.129-132
    • /
    • 2002
  • The practical virtual compensator, which uses a dynamic multi-leaf collimator (dMLC) and three-dimensional radiation therapy planning (3D RTP) system, was designed. And the feasibility study of the virtual compensator was done to verify that the virtual compensator acts a role as the replacement of the physical compensator. Design procedure consists of three steps. The first step is to generate the isodose distributions from the 3D RTP system (Render Plan, Elekta). Then isodose line pattern was used as the compensator pattern. Pre-determined compensating ratio was applied to generate the fluence map for the compensator design. The second step is to generate the leaf sequence file with Ma's algorithm in the respect of optimum MU-efficiency. All the procedure was done with home-made software. The last step is the QA procedure which performs the comparison of the dose distributions which are produced from the irradiation with the virtual compensator and from the calculation by 3D RTP. In this study, a phantom was fabricated for the verification of properness of the designed compensator. It is consisted of the styrofoam part which mimics irregular shaped contour or the missing tissues and the mini water phantom. Inhomogeneous dose distribution due to the styrofoam missing tissue could be calculated with the RTP system. The film dosimetry in the phantom with and without the compensator showed significant improvement of the dose distributions. The virtual compensator designed in this study was proved to be a replacement of the physical compensator in the practical point of view.

  • PDF

Study of Respiration Simulating Phantom using Thermocouple-based Respiration Monitoring Mask (열전쌍마스크를 이용한 호흡모사팬톰 연구)

  • Lim, Sang-Wook;Park, Sung-Ho;Yi, Byong-Yong;Lee, Sang-Hoon;Cho, Sam-Ju;Huh, Hyun-Do;Shin, Seong-Soo;Kim, Jong-Hoon;Lee, Sang-Wook;Kwon, Soo-Il;Choi, Eun-Kyung;Ahn, Seung-Do
    • Radiation Oncology Journal
    • /
    • v.23 no.4
    • /
    • pp.217-222
    • /
    • 2005
  • Purpose: To develop the respiration simulating phantom with thermocouple for evaluating 4D radiotherapy such as gated radiotherapy breathing control radiotherapy and dynamic tumor tracking radiotherapy. Materials and Methods: The respiration monitoring mask(ReMM) with thermocouple was developed to monitor the patient's irregular respiration. The signal from ReMM controls the simulating phantom as organ motion of patients in real-time. The organ and the phantom motion were compared with its respiratory curves to evaluate the simulating phantom. ReMM was used to measure patients' respiration, and the movement of simulating phantom was measured by using $RPM^{(R)}$. The fluoroscope was used to monitor the patient's diaphragm motion. relative to the organ motion, respectively. The standard deviation of discrepancy between the respiratory curve and the organ motion was 8.52% of motion range. Conclusion: Patients felt comfortable with ReMM. The relationship between the signal from ReMM and the organ motion shows strong correlation. The phantom simulates the organ motion in real-time according to the respiratory signal from the ReMM. It is expected that the simulating phantom with ReMM could be used to verify the 4D radiotherapy.

Damage prediction of RC containment shell under impact and blast loading

  • Pandey, A.K.
    • Structural Engineering and Mechanics
    • /
    • v.36 no.6
    • /
    • pp.729-744
    • /
    • 2010
  • There is world wide concern for safety of nuclear power installations after the terrorist attack on World Trade Center in 2001 and several other civilian structures in the last decade. The nuclear containment structure in many countries is a double shell structure (outer shell a RCC and inner a prestressed concrete). The outer reinforced concrete shell protects the inner shell and is designed for external loading like impact and blast. A comparative study of non-linear response of reinforced concrete nuclear containment cylindrical shell subjected to impact of an aircraft (Phantom) and explosion of different amounts of blast charges have been presented here. A material model which takes into account the strain rate sensitivity in dynamic loading situations, plastic and visco-plastic behavior in three dimensional stress state and cracking in tension has been developed earlier and implemented into a finite element code which has been validated with published literature. The analysis has been made using the developed software. Significant conclusions have been drawn for dissimilarity in response (deflections, stresses, cracks etc.) of the shell for impact and blast loading.

An Experimental Study of the Synthetic Sinc Wave in Ultrasonic Imaging (초음파 의료 영상에서 합성 Sinc 음장 집속방법의 실험적 고찰)

  • 이광주;정목근
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.3
    • /
    • pp.243-251
    • /
    • 2002
  • Synthetic zinc wave employs Pulsed plane wave as transmit beam with linear time delay curve. The received echoes in different transmit directions at different transmit times are superposed at imaging Points with Proper time delay compensation using synthetic focusing scheme. This scheme. which uses full aperture in transmit, obtains a high SNR image, and also features high lateral resolution by using two way dynamic focusing at all imaging depths. In this Paper, we consider the Problems in realization of synthetic zinc wave. Also. we have applied the scheme to obtain phantom and in-vivo images using a linear array of 5 MHz. In phantom test. experimental images show high resolution over a more extended imaging depth than conventional fixed Point transmit and receive dynamic focusing schemes In-vivo images show that the resolution could not overcome conventional focusing systems because of motion blurring and(or) aberration of tissue. but the frame rate tan be increased by a factor of more than 5 compared to conventional focusing schemes. with competitive resolution at all imaging depths .

Evaluation of Physical Characteristics of Discovery ST scanner Using NEMA NU2-2001 Standard (NEMA NU2-2001을 이용한 PET-CT 스캐너의 물리적 특성평가)

  • Lee, Byeong-Il
    • Journal of Integrative Natural Science
    • /
    • v.1 no.2
    • /
    • pp.79-83
    • /
    • 2008
  • As a new standard for performance measurement, NEMA NU2-2001 was presented recently. In this study, I investigated the spatial resolution, sensitivity, scatter fraction, and noise equivalent count ratio (NECR) in order to know the information of physical characteristics and system performance of GE discovery ST using this new standard. Bismuth germinate crystals ($6{\times}6$ array, $6.3mm{\times}6.3mm{\times}30mm$) were used in discovery ST (energy window:375-650 keV, coincidence window:11.7 nsec). To measure the sensitivity, five aluminum sleeves (Data Spectrum Corp., Chapel Hill, NC., USA, thickness:1.25 mm)-NEMA sensitivity phantom- filled with F-18 solution were used. Successive measurements in 2D and 3D acquisition mode were made with a line source at the center of transaxial field of view and 10 cm off from the center until the count was over 500,000. Spatial resolution was estimated using a point source (F-18, 0.1 mCi) at different locations in the FOV. Scatter fraction and NECR was tested using a NEMA scatter phantom. Dynamic data were acquired for 7 half-lives using F-18 solution. And true to background ratio was averaged at last three frames when the random rate was as small as ignorable for the calculation of scatter fraction. We anticipate this overall evaluated results could be used for the quality assurance and optimized image acquisition for clinical research.

  • PDF

High-Resolution Numerical Simulation of Respiration-Induced Dynamic B0 Shift in the Head in High-Field MRI

  • Lee, So-Hee;Barg, Ji-Seong;Yeo, Seok-Jin;Lee, Seung-Kyun
    • Investigative Magnetic Resonance Imaging
    • /
    • v.23 no.1
    • /
    • pp.38-45
    • /
    • 2019
  • Purpose: To demonstrate the high-resolution numerical simulation of the respiration-induced dynamic $B_0$ shift in the head using generalized susceptibility voxel convolution (gSVC). Materials and Methods: Previous dynamic $B_0$ simulation research has been limited to low-resolution numerical models due to the large computational demands of conventional Fourier-based $B_0$ calculation methods. Here, we show that a recently-proposed gSVC method can simulate dynamic $B_0$ maps from a realistic breathing human body model with high spatiotemporal resolution in a time-efficient manner. For a human body model, we used the Extended Cardiac And Torso (XCAT) phantom originally developed for computed tomography. The spatial resolution (voxel size) was kept isotropic and varied from 1 to 10 mm. We calculated $B_0$ maps in the brain of the model at 10 equally spaced points in a respiration cycle and analyzed the spatial gradients of each of them. The results were compared with experimental measurements in the literature. Results: The simulation predicted a maximum temporal variation of the $B_0$ shift in the brain of about 7 Hz at 7T. The magnitudes of the respiration-induced $B_0$ gradient in the x (right/left), y (anterior/posterior), and z (head/feet) directions determined by volumetric linear fitting, were < 0.01 Hz/cm, 0.18 Hz/cm, and 0.26 Hz/cm, respectively. These compared favorably with previous reports. We found that simulation voxel sizes greater than 5 mm can produce unreliable results. Conclusion: We have presented an efficient simulation framework for respiration-induced $B_0$ variation in the head. The method can be used to predict $B_0$ shifts with high spatiotemporal resolution under different breathing conditions and aid in the design of dynamic $B_0$ compensation strategies.

Linearity Estimation of PET/CT Scanner in List Mode Acquisition (List Mode에서 PET/CT Scanner의 직선성 평가)

  • Choi, Hyun-Jun;Kim, Byung-Jin;Ito, Mikiko;Lee, Hong-Jae;Kim, Jin-Ui;Kim, Hyun-Joo;Lee, Jae-Sung;Lee, Dong-Soo
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.16 no.1
    • /
    • pp.86-90
    • /
    • 2012
  • Purpose: Quantification of myocardial blood flow (MBF) using dynamic PET imaging has the potential to assess coronary artery disease. Rb-82 plays a key role in the clinical assessment of myocardial perfusion using PET. However, MBF could be overestimated due to the underestimation of left ventricular input function in the beginning of the acquisition when the scanner has non-linearity between count rate and activity concentration due to the scanner dead-time. Therefore, in this study, we evaluated the count rate linearity as a function of the activity concentration in PET data acquired in list mode. Materials & methods: A cylindrical phantom (diameter, 12 cm length, 10.5 cm) filled with 296 MBq F-18 solution and 800 mL of water was used to estimate the linearity of the Biograph 40 True Point PET/CT scanner. PET data was acquired with 10 min per frame of 1 bed duration in list mode for different activity concentration levels in 7 half-lives. The images were reconstructed by OSEM and FBP algorithms. Prompt, net true and random counts of PET data according to the activity concentration were measured. Total and background counts were measured by drawing ROI on the phantom images and linearity was measured using background correction. Results: The prompt count rates in list mode were linearly increased proportionally to the activity concentration. At a low activity concentration (<30 kBq/mL), the prompt net true and random count rates were increased with the activity concentration. At a high activity concentration (>30 kBq/mL), the increasing rate of the prompt net true rates was slightly decreased while the increasing rate of random counts was increased. There was no difference in the image intensity linearity between OSEM and FBP algorithms. Conclusion: The Biograph 40 True Point PET/CT scanner showed good linearity of count rate even at a high activity concentration (~370 kBq/mL).The result indicates that the scanner is useful for the quantitative analysis of data in heart dynamic studies using Rb-82, N-13, O-15 and F-18.

  • PDF

Dosimetric Verification for Primary Focal Hypermetabolism of Nasopharyngeal Carcinoma Patients Treated with Dynamic Intensity-modulated Radiation Therapy

  • Xin, Yong;Wang, Jia-Yang;Li, Liang;Tang, Tian-You;Liu, Gui-Hong;Wang, Jian-She;Xu, Yu-Mei;Chen, Yong;Zhang, Long-Zhen
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.3
    • /
    • pp.985-989
    • /
    • 2012
  • Objective: To make sure the feasibility with $^{18F}FDG$ PET/CT to guided dynamic intensity-modulated radiation therapy (IMRT) for nasopharyngeal carcinoma patients, by dosimetric verification before treatment. Methods: Chose 11 patients in III~IVA nasopharyngeal carcinoma treated with functional image-guided IMRT and absolute and relative dosimetric verification by Varian 23EX LA, ionization chamber, 2DICA of I'mRT Matrixx and IBA detachable phantom. Drawing outline and making treatment plan were by different imaging techniques (CT and $^{18F}FDG$ PET/CT). The dose distributions of the various regional were realized by SMART. Results: The absolute mean errors of interest area were $2.39%{\pm}0.66$ using 0.6cc ice chamber. Results using DTA method, the average relative dose measurements within our protocol (3%, 3 mm) were 87.64% at 300 MU/min in all filed. Conclusions: Dosimetric verification before IMRT is obligatory and necessary. Ionization chamber and 2DICA of I'mRT Matrixx was the effective dosimetric verification tool for primary focal hyper metabolism in functional image-guided dynamic IMRT for nasopharyngeal carcinoma. Our preliminary evidence indicates that functional image-guided dynamic IMRT is feasible.