• 제목/요약/키워드: Dynamic object tracking

Search Result 101, Processing Time 0.024 seconds

Foreground segmentation and tracking from sequential stereo images for 3D object modeling (3차원 물체 모델링을 위한 연속된 스테레오 이미지 상에서의 전경 영역 분리 및 추적)

  • Han, In-Kyu;Kim, Hyoung-Nyoun;Kim, Kyung-Koo;Park, Ji-Hyung
    • Journal of the HCI Society of Korea
    • /
    • v.6 no.1
    • /
    • pp.9-16
    • /
    • 2011
  • The previous researches of 3D object modeling have been performed in a limited environment where a target object only exists. However, in order to model an object in the real environment, we need to consider a dynamic environment, which has various objects and a frequently changing background. Therefore, this paper presents a segmentation and tracking method for a foreground which includes a target object in the dynamic environment. By using depth information than color information, the foreground region can be segmented and tracked more robustly. In addition, the foreground region can be tracked on the sequential images by referring depth distributions of the foreground region because both the position and the status in the consecutive images of the foreground region are almost unchanged. Experimental results show that our proposed method can robustly segment and track the foreground region in various conditions of the real environment. Moreover, as an application of the proposed method, it is presented a method for modeling an object extracting the object regions from the foreground region that is segmented and tracked.

  • PDF

Swarm Based Robust Object Tracking Algorithm Using Adaptive Parameter Control (적응적 파라미터 제어를 이용하는 스웜 기반의 강인한 객체 추적 알고리즘)

  • Bae, Changseok;Chung, Yuk Ying
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.13 no.5
    • /
    • pp.39-50
    • /
    • 2017
  • Moving object tracking techniques can be considered as one of the most essential technique in the video understanding of which the importance is much more emphasized recently. However, irregularity of light condition in the video, variations in shape and size of object, camera motion, and occlusion make it difficult to tracking moving object in the video. Swarm based methods are developed to improve the performance of Kalman filter and particle filter which are known as the most representative conventional methods, but these methods also need to consider dynamic property of moving object. This paper proposes adaptive parameter control method which can dynamically change weight value among parameters in particle swarm optimization. The proposed method classifies each particle to 3 groups, and assigns different weight values to improve object tracking performance. Experimental results show that our scheme shows considerable improvement of performance in tracking objects which have nonlinear movements such as occlusion or unexpected movement.

A Precise Tracking System for Dynamic Object using IR sensor for Spatial Augmented Reality (공간증강현실 구현을 위한 적외선 센서 기반 동적 물체 정밀 추적 시스템)

  • Oh, JiSoo;Park, Jinho
    • Journal of the Korea Computer Graphics Society
    • /
    • v.23 no.3
    • /
    • pp.115-122
    • /
    • 2017
  • As the era of the fourth industrial revolution began, augmented reality showed infinite possibilities throughout society. However, current augmented reality systems such as head-mount display and hand-held display systems suffer from various problems such as weariness and nausea, and thus space-augmented reality, which is a projector-based augmented reality technology, is attracting attention. Spacial augmented reality requires precise tracking of dynamic objects to project virtual images in order to increase realism of augmented reality and induce user 's immersion. The infrared sensor-based precision tracking algorithm developed in this paper demonstrates very robust tracking performance with an average error rate of less than 1.5% and technically opens the way towards advanced augmented reality technologies such as tracking for arbitrary objects, and Socially, by easy-to-use tracking algorithms for non-specialists, it allows designers, students, and children to easily create and enjoy their own augmented reality content.

EBCO - Efficient Boundary Detection and Tracking Continuous Objects in WSNs

  • Chauhdary, Sajjad Hussain;Lee, Jeongjoon;Shah, Sayed Chhattan;Park, Myong-Soon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.11
    • /
    • pp.2901-2919
    • /
    • 2012
  • Recent research in MEMS (Micro-Electro-Mechanical Systems) and wireless communication has enabled tracking of continuous objects, including fires, nuclear explosions and bio-chemical material diffusions. This paper proposes an energy-efficient scheme that detects and tracks different dynamic shapes of a continuous object (i.e., the inner and outer boundaries of a continuous object). EBCO (Efficient Boundary detection and tracking of Continuous Objects in WSNs) exploits the sensing capabilities of sensor nodes by automatically adjusting the sensing range to be either a boundary sensor node or not, instead of communicating to its neighboring sensor nodes because radio communication consumes more energy than adjusting the sensing range. The proposed scheme not only increases the tracking accuracy by choosing the bordering boundary sensor nodes on the phenomenon edge, but it also minimizes the power consumption by having little communication among sensor nodes. The simulation result shows that our proposed scheme minimizes the energy consumption and achieves more precise tracking results than existing approaches.

Controller Design for Object Tracking with an Active Camera (능동 카메라 기반의 물체 추적 제어기 설계)

  • Youn, Su-Jin;Choi, Goon-Ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.1
    • /
    • pp.83-89
    • /
    • 2011
  • In the case of the tracking system with an active camera, it is very difficult to guarantee real-time processing due to the attribute of vision system which handles large amounts of data at once and has time delay to process. The reliability of the processed result is also badly influenced by the slow sampling time and uncertainty caused by the image processing. In this paper, we figure out dynamic characteristics of pixels reflected on the image plane and derive the mathematical model of the vision tracking system which includes the actuating part and the image processing part. Based on this model, we find a controller that stabilizes the system and enhances the tracking performance to track a target rapidly. The centroid is used as the position index of moving object and the DC motor in the actuating part is controlled to keep the identified centroid at the center point of the image plane.

The Design of the Sensory-Motor System for Real Time Object Tracking (이동 물체를 실시간으로 추적하기 위한 Sensory-Motor System 설계)

  • Lee, Sang-Hee;Dong, Sung-Soo;Lee, Chong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2780-2782
    • /
    • 2002
  • In this paper Valentine Braitenberg structure based sensory motor model for object tracking control system was proposed. Conventional model based control schemes are require highly non-linear mathematical models, which require long computational time to solve complex high order equations. Contrast to conventional models proposed system simply link signal data from camera directly to the inputs of neural network, and outputs of network are directly fed into input of motor driver of camera. With simple structure of sensory motor model, real time tracking control system for dynamic object was realized successfully, and the implementation of sensory motor model can overcome the limitation of model-based control schemes.

  • PDF

Tracking Moving Object using Hierarchical Search Method (계층적 탐색기법을 이용한 이동물체 추적)

  • 방만식;김태식;김영일
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.3
    • /
    • pp.568-576
    • /
    • 2003
  • This paper proposes a moving object tracking algorithm by using hierarchical search method in dynamic scenes. Proposed algorithm is based on two main steps: generation step of initial model from different pictures, and tracking step of moving object under the time-yawing scenes. With a series of this procedure, tracking process is not only stable under far distance circumstance with respect to the previous frame but also reliable under shape variation from the 3-dimensional(3D) motion and camera sway, and consequently, by correcting position of moving object, tracking time is relatively reduced. Partial Hausdorff distance is also utilized as an estimation function to determine the similarity between model and moving object. In order to testify the performance of proposed method, the extraction and tracking performance have tested using some kinds of moving car in dynamic scenes. Experimental results showed that the proposed algorithm provides higher performance. Namely, matching order is 28.21 times on average, and considering the processing time per frame, it is 53.21ms/frame. Computation result between the tracking position and that of currently real with respect to the root-mean-square(rms) is 1.148. In the occasion of different vehicle in terms of size, color and shape, tracking performance is 98.66%. In such case as background-dependence due to the analogy to road is 95.33%, and total average is 97%.

Tracking Moving Object using Hausdorff Distance (Hausdorff 거리를 이용한 이동물체 추적)

  • Kim, Tea-Sik;Lee, Ju-Shin
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.37 no.3
    • /
    • pp.79-87
    • /
    • 2000
  • In this paper, we propose a model based moving object tracking algorithm In dynamic scenes To adapt shape change of the moving object, the Hausdorff distance is applied as the measurement of similarity between model and image To reduce processing time, 2D logarithmic search method is applied for locate the position of moving object Experiments on a running vehicle and motorcycle, the result showed that the mean square error of real position and tracking result is 1150 and 1845; matching times are reduced average 1125times and 523 times than existing algorithm for vehicle image and motorcycle image, respectively It showed that the proposed algorithm could track the moving object accurately.

  • PDF

Signalman Action Analysis for Container Crane Controlling

  • Bae, Suk-Tae
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.12
    • /
    • pp.1728-1735
    • /
    • 2009
  • Human action tracking plays an important place in human-computer-interaction, human action tracking is a challenging task because of the exponentially increased computational complexity in terms of the degrees of freedom of the object and the severe image ambiguities incurred by frequent self-occlusions. In this paper, we will propose a novel method to track human action, in our technique, a dynamic background estimation algorithm will be applied firstly. Based on the estimated background, we then extract the human object from the video sequence, and the skeletonization method and Hough transform method will be used to detect the main structure of human body and each part rotation angle. The calculated rotation angles will be used to control a crane in the port, thus we can just control the container crane by using signalman body. And the experimental results can show that our proposed method can get a preferable result than the conventional methods such as: MIT, JPF or MFMC.

  • PDF

Robust Dynamic Projection Mapping onto Deforming Flexible Moving Surface-like Objects (유연한 동적 변형물체에 대한 견고한 다이내믹 프로젝션맵핑)

  • Kim, Hyo-Jung;Park, Jinho
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.6
    • /
    • pp.897-906
    • /
    • 2017
  • Projection Mapping, also known as Spatial Augmented Reality(SAR) has attracted much attention recently and used for many division, which can augment physical objects with projected various virtual replications. However, conventional approaches towards projection mapping have faced some limitations. Target objects' geometric transformation property does not considered, and movements of flexible objects-like paper are hard to handle, such as folding and bending as natural interaction. Also, precise registration and tracking has been a cumbersome process in the past. While there have been many researches on Projection Mapping on static objects, dynamic projection mapping that can keep tracking of a moving flexible target and aligning the projection at interactive level is still a challenge. Therefore, this paper propose a new method using Unity3D and ARToolkit for high-speed robust tracking and dynamic projection mapping onto non-rigid deforming objects rapidly and interactively. The method consists of four stages, forming cubic bezier surface, process of rendering transformation values, multiple marker recognition and tracking, and webcam real time-lapse imaging. Users can fold, curve, bend and twist to make interaction. This method can achieve three high-quality results. First, the system can detect the strong deformation of objects. Second, it reduces the occlusion error which reduces the misalignment between the target object and the projected video. Lastly, the accuracy and the robustness of this method can make result values to be projected exactly onto the target object in real-time with high-speed and precise transformation tracking.