• 제목/요약/키워드: Dynamic object tracking

검색결과 105건 처리시간 0.024초

Dynamic Tracking Aggregation with Transformers for RGB-T Tracking

  • Xiaohu, Liu;Zhiyong, Lei
    • Journal of Information Processing Systems
    • /
    • 제19권1호
    • /
    • pp.80-88
    • /
    • 2023
  • RGB-thermal (RGB-T) tracking using unmanned aerial vehicles (UAVs) involves challenges with regards to the similarity of objects, occlusion, fast motion, and motion blur, among other issues. In this study, we propose dynamic tracking aggregation (DTA) as a unified framework to perform object detection and data association. The proposed approach obtains fused features based a transformer model and an L1-norm strategy. To link the current frame with recent information, a dynamically updated embedding called dynamic tracking identification (DTID) is used to model the iterative tracking process. For object association, we designed a long short-term tracking aggregation module for dynamic feature propagation to match spatial and temporal embeddings. DTA achieved a highly competitive performance in an experimental evaluation on public benchmark datasets.

다중 도메인 데이터 기반 구별적 모델 예측 트레커를 위한 동적 탐색 영역 특징 강화 기법 (Reinforced Feature of Dynamic Search Area for the Discriminative Model Prediction Tracker based on Multi-domain Dataset)

  • 이준하;원홍인;김병학
    • 대한임베디드공학회논문지
    • /
    • 제16권6호
    • /
    • pp.323-330
    • /
    • 2021
  • Visual object tracking is a challenging area of study in the field of computer vision due to many difficult problems, including a fast variation of target shape, occlusion, and arbitrary ground truth object designation. In this paper, we focus on the reinforced feature of the dynamic search area to get better performance than conventional discriminative model prediction trackers on the condition when the accuracy deteriorates since low feature discrimination. We propose a reinforced input feature method shown like the spotlight effect on the dynamic search area of the target tracking. This method can be used to improve performances for deep learning based discriminative model prediction tracker, also various types of trackers which are used to infer the center of the target based on the visual object tracking. The proposed method shows the improved tracking performance than the baseline trackers, achieving a relative gain of 38% quantitative improvement from 0.433 to 0.601 F-score at the visual object tracking evaluation.

평균 이동 알고리즘을 이용한 영상기반 실내 물체 추적 (Vision-Based Indoor Object Tracking Using Mean-Shift Algorithm)

  • 김종훈;조겸래;이대우
    • 제어로봇시스템학회논문지
    • /
    • 제12권8호
    • /
    • pp.746-751
    • /
    • 2006
  • In this paper, we present tracking algorithm for the indoor moving object. We research passive method using a camera and image processing. It had been researched to use dynamic based estimators, such as Kalman Filter, Extended Kalman Filter and Particle Filter for tracking moving object. These algorithm have a good performance on real-time tracking, but they have a limit. If the shape of object is changed or object is located on complex background, they will fail to track them. This problem will need the complicated image processing algorithm. Finally, a large algorithm is made from integration of dynamic based estimator and image processing algorithm. For eliminating this inefficiency problem, image based estimator, Mean-shift Algorithm is suggested. This algorithm is implemented by color histogram. In other words, it decide coordinate of object's center from using probability density of histogram in image. Although shape is changed, this is not disturbed by complex background and can track object. This paper shows the results in real camera system, and decides 3D coordinate using the data from mean-shift algorithm and relationship of real frame and camera frame.

증강현실 서비스를 위한 Camshift와 SURF를 개선한 객체 검출 및 추적 구현 (Implementation of Improved Object Detection and Tracking based on Camshift and SURF for Augmented Reality Service)

  • 이용환;김흥준
    • 반도체디스플레이기술학회지
    • /
    • 제16권4호
    • /
    • pp.97-102
    • /
    • 2017
  • Object detection and tracking have become one of the most active research areas in the past few years, and play an important role in computer vision applications over our daily life. Many tracking techniques are proposed, and Camshift is an effective algorithm for real time dynamic object tracking, which uses only color features, so that the algorithm is sensitive to illumination and some other environmental elements. This paper presents and implements an effective moving object detection and tracking to reduce the influence of illumination interference, which improve the performance of tracking under similar color background. The implemented prototype system recognizes object using invariant features, and reduces the dimension of feature descriptor to rectify the problems. The experimental result shows that that the system is superior to the existing methods in processing time, and maintains better problem ratios in various environments.

  • PDF

비모수적 차영상과 칼만 필터를 이용한 실시간 객체 추적 알고리즘의 구현 (Implementation of Real-time Object Tracking Algorithm based on Non-parametric Difference Picture and Kalman Filter)

  • 김영주;김광백
    • 한국통신학회논문지
    • /
    • 제28권10C호
    • /
    • pp.1013-1022
    • /
    • 2003
  • 본 논문은 연속적인 영상에 대해 비모수적 영상 처리 기법과 칼만 필터 기반의 동적 AR(2) 프로세스 기법을 적용하여 객체의 움직임을 적응적으로 추적하는 실시간 객체 추적 알고리즘을 구현하였다. 다양한 환경 조건에서 입력되는 영상에 대해 비모수적 영상 처리 기법을 이용하여 처리함으로써 효과적으로 움직임 객체를 추출하였으며, 객체의 움직임을 동적 AR(2) 프로세스 모형으로 모델링하고 동적으로 변하는 AR(2) 프로세스의 파라미터를 칼만 필터를 통해 추정함으로써 객체의 다변적인 움직임을 적응적으로 예측하여 추적할 수 있었다. 구현된 객체 추적 시스템을 실험한 결과, 기존의 선형 칼만 필터 기법을 이용한 추적 기법과 비교하여 추정 오차가 약 1/2.5∼1/50 만큼 더 적게 나와 객체의 움직임을 더 근사적으로 추적함을 알 수 있었다.

동적 윤곽 모델을 이용한 이동 물체 추적 (Moving Object Tracking Using Active Contour Model)

  • 한규범;백윤수
    • 대한기계학회논문집A
    • /
    • 제27권5호
    • /
    • pp.697-704
    • /
    • 2003
  • In this paper, the visual tracking system for arbitrary shaped moving object is proposed. The established tracking system can be divided into model based method that needs previous model for target object and image based method that uses image feature. In the model based method, the reliable tracking is possible, but simplification of the shape is necessary and the application is restricted to definite target mod el. On the other hand, in the image based method, the process speed can be increased, but the shape information is lost and the tracking system is sensitive to image noise. The proposed tracking system is composed of the extraction process that recognizes the existence of moving object and tracking process that extracts dynamic characteristics and shape information of the target objects. Specially, active contour model is used to effectively track the object that is undergoing shape change. In initializatio n process of the contour model, the semi-automatic operation can be avoided and the convergence speed of the contour can be increased by the proposed effective initialization method. Also, for the efficient solution of the correspondence problem in multiple objects tracking, the variation function that uses the variation of position structure in image frame and snake energy level is proposed. In order to verify the validity and effectiveness of the proposed tracking system, real time tracking experiment for multiple moving objects is implemented.

Invariant-Feature Based Object Tracking Using Discrete Dynamic Swarm Optimization

  • Kang, Kyuchang;Bae, Changseok;Moon, Jinyoung;Park, Jongyoul;Chung, Yuk Ying;Sha, Feng;Zhao, Ximeng
    • ETRI Journal
    • /
    • 제39권2호
    • /
    • pp.151-162
    • /
    • 2017
  • With the remarkable growth in rich media in recent years, people are increasingly exposed to visual information from the environment. Visual information continues to play a vital role in rich media because people's real interests lie in dynamic information. This paper proposes a novel discrete dynamic swarm optimization (DDSO) algorithm for video object tracking using invariant features. The proposed approach is designed to track objects more robustly than other traditional algorithms in terms of illumination changes, background noise, and occlusions. DDSO is integrated with a matching procedure to eliminate inappropriate feature points geographically. The proposed novel fitness function can aid in excluding the influence of some noisy mismatched feature points. The test results showed that our approach can overcome changes in illumination, background noise, and occlusions more effectively than other traditional methods, including color-tracking and invariant feature-tracking methods.

레이더 에고 모션 추정 신뢰성 향상을 위한 도플러 속도 기반 동적 물체 추적 및 제거 (Doppler Velocity-based Dynamic Object Tracking and Rejection for Increasing Reliability of Radar Ego-Motion Estimation)

  • 박영상;민경욱;최정단
    • 한국ITS학회 논문지
    • /
    • 제21권5호
    • /
    • pp.218-232
    • /
    • 2022
  • 차량의 물체 인식에 사용되던 센서인 레이더 센서를 위치 추정에 사용하기 위한 연구들이 진행되고 있다. 특히 레이더 센서에서 출력되는 도플러 속도를 이용하여 동적 물체와 정적 물체를 분류하고, 정적 물체만을 이용하여 에고 모션을 계산하는 방법이 연구되었다. 기존의 동적 물체 분류에서는 RANSAC을 사용한 방법이 제시되었는데, 단 한 번의 알고리즘 실패가 큰 영향을 미치는 위치 추정의 특성상 더 높은 성능을 가진 분류 방법이 필요하다. 본 논문에서는 동적 물체의 추적 및 필터링을 통해 기존 방법보다 분류 성능을 높이는 방법에 대해 제안한다. 추가적으로 GMPHD 필터를 사용하여 추적 성능을 최대로 향상시킨다. 제안된 방법은 기존의 방법과 비교하여 분류 정확도에서 더 높은 성능을 보였으며, 특히 알고리즘의 실패를 방지할 수 있다는 것을 보인다.

Active contour와 Optical flow를 이용한 카메라가 움직이는 환경에서의 이동 물체의 검출과 추적 (A Method of Segmentation and Tracking of a Moving Object in Moving Camera Circumstances using Active Contour Models and Optical Flow)

  • 김완진;장대근;김회율
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 하계종합학술대회 논문집(4)
    • /
    • pp.89-92
    • /
    • 2001
  • In this paper, we propose a new approach for tracking a moving object in moving image sequences using active contour models and optical flow. In our approach object segmentation is achieved by active contours, and object tracking is done by motion estimation based on optical flow. To get more dynamic characteristics, Lagrangian dynamics combined to the active contour models. For the optical flow computation, a method, which is based on Spatiotempo-ral Energy Models, is employed to perform robust tracking under poor environments. A prototype real tracking system has been developed and applied to a contents-based video retrieval systems.

  • PDF

Active Object Tracking using Image Mosaic Background

  • Jung, Young-Kee;Woo, Dong-Min
    • Journal of information and communication convergence engineering
    • /
    • 제2권1호
    • /
    • pp.52-57
    • /
    • 2004
  • In this paper, we propose a panorama-based object tracking scheme for wide-view surveillance systems that can detect and track moving objects with a pan-tilt camera. A dynamic mosaic of the background is progressively integrated in a single image using the camera motion information. For the camera motion estimation, we calculate affine motion parameters for each frame sequentially with respect to its previous frame. The camera motion is robustly estimated on the background by discriminating between background and foreground regions. The modified block-based motion estimation is used to separate the background region. Each moving object is segmented by image subtraction from the mosaic background. The proposed tracking system has demonstrated good performance for several test video sequences.