• Title/Summary/Keyword: Dynamic numerical modeling

Search Result 468, Processing Time 0.024 seconds

The differences in the potential energy anomaly for analyzing mixing and stratification between 2D and 3D model

  • Minh, Nguyen Ngoc;Hwang, Jin Hwan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.240-240
    • /
    • 2015
  • As Simpson et al. (1990) emphasized the importance of the straining process in the stratification and mixing in the estuarine circulation process, various researches have investigated on the relative contribution of each process to the overall potential energy anomaly dynamics. However, many numerical works have done only for two dimensional modeling along channel or the short distance cross sectional three dimensional simulations as Burchard et al. (2008) and the estuarine channel was not simulated so far. But, in the study on the physics of shallow coastal seas, spatial dimension in the three dimensional way affects significantly on results of a particular numerical model. Therefore, the comparison of two and three dimensional models is important to understand the real physics of mixing and stratification in an estuary. Also, as Geyer and MacCready (2013) pointed out that the lateral process seems to be important in determining the periodic stratifications, to study such process the three dimensional modeling must be required. The present study uses a numerical model to show the signification roles of each term of the time-dependent dynamic equation for the potential energy anomaly (PEA) in controlling along and lateral channel flows and different stratification structures. Moreover, we present the relationships between the ${\Phi}$-advection, the depth mean straining, vertical mixing and vertical advection can explain well how water level, salinity distribution and across velocity 2D model are slightly different from 3D.

  • PDF

Distributed plasticity approach for nonlinear analysis of nuclear power plant equipment: Experimental and numerical studies

  • Tran, Thanh-Tuan;Salman, Kashif;Kim, Dookie
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.3100-3111
    • /
    • 2021
  • Numerical modeling for the safety-related equipment used in a nuclear power plant (i.e., cabinet facilities) plays an essential role in seismic risk assessment. A full finite element model is often time-consuming for nonlinear time history analysis due to its computational modeling complexity. Thus, this study aims to generate a simplified model that can capture the nonlinear behavior of the electrical cabinet. Accordingly, the distributed plasticity approach was utilized to examine the stiffness-degradation effect caused by the local buckling of the structure. The inherent dynamic characteristics of the numerical model were validated against the experimental test. The outcomes indicate that the proposed model can adequately represent the significant behavior of the structure, and it is preferred in practice to perform the nonlinear analysis of the cabinet. Further investigations were carried out to evaluate the seismic behavior of the cabinet under the influence of the constitutive law of material models. Three available models in OpenSees (i.e., linear, bilinear, and Giuffre-Menegotto-Pinto (GMP) model) were considered to provide an enhanced understating of the seismic responses of the cabinet. It was found that the material nonlinearity, which is the function of its smoothness, is the most effective parameter for the structural analysis of the cabinet. Also, it showed that implementing nonlinear models reduces the seismic response of the cabinet considerably in comparison with the linear model.

Seismic fragility and risk assessment of an unsupported tunnel using incremental dynamic analysis (IDA)

  • Moayedifar, Arsham;Nejati, Hamid Reza;Goshtasbi, Kamran;Khosrotash, Mohammad
    • Earthquakes and Structures
    • /
    • v.16 no.6
    • /
    • pp.705-714
    • /
    • 2019
  • Seismic assessment of underground structures is one of the challenging problems in engineering design. This is because there are usually many sources of uncertainties in rocks and probable earthquake characteristics. Therefore, for decreasing of the uncertainties, seismic response of underground structures should be evaluated by sufficient number of earthquake records which is scarcely possible in common seismic assessment of underground structures. In the present study, a practical risk-based approach was performed for seismic risk assessment of an unsupported tunnel. For this purpose, Incremental Dynamic Analysis (IDA) was used to evaluate the seismic response of a tunnel in south-west railway of Iran and different analyses were conducted using 15 real records of earthquakes which were chosen from the PEER ground motion database. All of the selected records were scaled to different intensity levels (PGA=0.1-1.7 g) and applied to the numerical models. Based on the numerical modeling results, seismic fragility curves of the tunnel under study were derived from the IDA curves. In the next, seismic risk curve of the tunnel were determined by convolving the hazard and fragility curves. On the basis of the tunnel fragility curves, an earthquake with PGA equal to 0.35 g may lead to severe damage or collapse of the tunnel with only 3% probability and the probability of moderate damage to the tunnel is 12%.

Seismic equivalent linear response of a structure by considering soil-structure interaction: Analytical and numerical analysis

  • Maroua Lagaguine;Badreddine Sbartai
    • Structural Engineering and Mechanics
    • /
    • v.87 no.2
    • /
    • pp.173-189
    • /
    • 2023
  • For a given structural geometry, the stiffness and damping parameters of the soil and the dynamic response of the structure may change in the face of an equivalent linear soil behavior caused by a strong earthquake. Therefore, the influence of equivalent linear soil behavior on the impedance functions form and the seismic response of the soil-structure system has been investigated. Through the substructure method, the seismic response of the selected structure was obtained by an analytical formulation based on the dynamic equilibrium of the soil-structure system modeled by an analog model with three degrees of freedom. Also, the dynamic response of the soil-structure system for a nonlinear soil behavior and for the two types of impedance function forms was also analyzed by 2D finite element modeling using ABAQUS software. The numerical results were compared with those of the analytical solution. After the investigation, the effect of soil nonlinearity clearly showed the critical role of soil stiffness loss under strong shaking, which is more complex than the linear elastic soil behavior, where the energy dissipation depends on the seismic motion amplitude and its frequency, the impedance function types, the shear modulus reduction and the damping increase. Excellent agreement between finite element analysis and analytical results has been obtained due to the reasonable representation of the model.

Factors governing dynamic response of steel-foam ceramic protected RC slabs under blast loads

  • Hou, Xiaomeng;Liu, Kunyu;Cao, Shaojun;Rong, Qin
    • Steel and Composite Structures
    • /
    • v.33 no.3
    • /
    • pp.333-346
    • /
    • 2019
  • Foam ceramic materials contribute to the explosion effect weakening on concrete structures, due to the corresponding excellent energy absorption ability. The blast resistance of concrete members could be improved through steel-foam ceramics as protective cladding layers. An approach for the modeling of dynamic response of steel-foam ceramic protected reinforced concrete (Steel-FC-RC) slabs under blast loading was presented with the LS-DYNA software. The orthogonal analysis (five factors with five levels) under three degrees of blast loads was conducted. The influence rankings and trend laws were further analyzed. The dynamic displacement of the slab bottom was significantly reduced by increasing the thickness of steel plate, foam ceramic and RC slab, while the displacement decreased slightly as the steel yield strength and the compressive strength of concrete increased. However, the optimized efficiency of blast resistance decreases with factors increase to higher level. Moreover, an efficient design method was reported based on the orthogonal analysis.

Dynamic Numerical Modeling for LOx Swirl Injector at Supercritical Conditions (초임계 상태에서의 LOx 스월 인젝터에 대한 동적 수치 모델링)

  • Kim, Kuk-Jin;Heo, Jun-Young;Kim, Jong-Chan;Sung, Hong-Gye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.42-46
    • /
    • 2009
  • For understanding of high performance liquid rocket engine operating at high pressure, dynamic characteristics of liquid oxygen in a swirl injector operating at supercritical conditions has been numerically investigated. Turbulent numerical model is based on large eddy simulation and contains full conservation laws including Soave modification of Redlich-Kwong equation of state and Chung's model. Preconditioning method is applied to get an effective convergence rate. Numerical analysis results are compared with the one that ideal equation of state applied to. Differences of thermodynamic properties and mixing dynamics are investigated at liquid phase area inside injector and combustion chamber.

  • PDF

Frequency variation in construction stages and model validation for steel buildings

  • Aras, Fuat
    • Steel and Composite Structures
    • /
    • v.22 no.3
    • /
    • pp.647-662
    • /
    • 2016
  • This study aims to monitor the variation of modal frequencies of steel buildings during their construction sequence. In this respect, construction of a steel building is followed by vibration based measurements. The monitored building is a three-story educational building within a building group whose structural system consists of steel moment resisting steel frames and eccentric braces. Five different acceleration measurements in two perpendicular directions are taken on five different construction stages, starting from the erection of the columns and beams ending with the completion of the construction. The recorded measurements are transferred into frequency domain and the dominant frequencies for each case have been determined. The change in the dominant frequencies is evaluated with the existing construction stages and performed constructional works between the stages. The last measurement, performed on the building in service, revealed the first two dominant frequencies as mutual in X and Y direction, showing that these dynamic modes are torsional modes. This result is investigated by numerical analysis performed with finite element model of the building constructed for design purpose. Lower frequencies and different mode shapes are determined from numerical analysis. The reason of lower frequencies is discussed and the vibration survey is extended to determine the effects of an adjacent building. The results showed that the building is in strong relation with an adjoining building in spite of a designed construction joint.

A hybrid artificial intelligence and IOT for investigation dynamic modeling of nano-system

  • Ren, Wei;Wu, Xiaochen;Cai, Rufeng
    • Advances in nano research
    • /
    • v.13 no.2
    • /
    • pp.165-174
    • /
    • 2022
  • In the present study, a hybrid model of artificial neural network (ANN) and internet of things (IoT) is proposed to overcome the difficulties in deriving governing equations and numerical solutions of the dynamical behavior of the nano-systems. Nano-structures manifest size-dependent behavior in response to static and dynamic loadings. Nonlocal and length-scale parameters alongside with other geometrical, loading and material parameters are taken as input parameters of an ANN to observe the natural frequency and damping behavior of micro sensors made from nanocomposite material with piezoelectric layers. The behavior of a micro-beam is simulated using famous numerical methods in literature under base vibrations. The ANN was further trained to correlate the output vibrations to the base vibration. Afterwards, using IoT, the electrical potential conducted in the sensors are collected and converted to numerical data in an embedded mini-computer and transferred to a server for further calculations and decision by ANN. The ANN calculates the base vibration behavior with is crucial in mechanical systems. The speed and accuracy of the ANN in determining base excitation behavior are the strengths of this network which could be further employed by engineers and scientists.

The Effect of Spot Welding on the Stiffness of Closed Thin-Walled Members (점용접부가 폐단면 박판 부재의 강성에 미치는 영향)

  • Park Yong Kuk;Kim Jin Gon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.2
    • /
    • pp.194-201
    • /
    • 2005
  • For engineers in the industry, this study considers a reliable and practical finite element modeling technique to estimate the behavior of closed thin-walled members with spot weldings. Dynamic and static experiments confirm that the technique - modeling the spot weldings with solid elements which have the adjusted rotational freedoms and fill the welding space - Yields satisfactory results. Numerical studies on the double hat-shaped members. adopting this modeling technique. show the effect of the spot welding Pitch and the spot welding location in the flange on the stiffness of the members Using the principal stiffness and newly proposed GSPI(global stiffness performance index), we also carefully examine how the spot welding curvature, and sectional shape, etc.. synthetically influence the stiffness of a real excavator pillar in the field.

A Numerical Modeling of Smoke Behavior and Detection for Fire Developed in International Space Station (국제우주정거장 내부 화재시 연기거동 및 감지특성에 관한 수치 모델링)

  • Park, Seul-Hyun;Lee, Joo-Hee;Kim, Youn-Kyu;Hwang, Cheol-Hong
    • Fire Science and Engineering
    • /
    • v.26 no.6
    • /
    • pp.51-56
    • /
    • 2012
  • The onset of fire on the International Space Station (ISS) is a critical problem that can threaten the life of crew members onboard and thus instantaneous fire detection and extinguishment technology has been considered as one of the most important aspects in the ISS operation. In the present study, a numerical analysis was performed to better understanding of the characteristics of smoke behaviors and detection in a pressurized module of the ISS using the NIST Fire Dynamic Simulator (FDS). Numerical results indicate that the smoke flow patterns under zero-gravity condition are clearly different from those under normal gravity condition. In addition, the results obtained from numerical simulations coupled with the PM internal flows are expected to provide basic and useful information in designing the microgravity fire detection devices and establishing in fire response protocol for astronauts or the crew members.