• 제목/요약/키워드: Dynamic neural network

검색결과 784건 처리시간 0.023초

A Multi-Class Classifier of Modified Convolution Neural Network by Dynamic Hyperplane of Support Vector Machine

  • Nur Suhailayani Suhaimi;Zalinda Othman;Mohd Ridzwan Yaakub
    • International Journal of Computer Science & Network Security
    • /
    • 제23권11호
    • /
    • pp.21-31
    • /
    • 2023
  • In this paper, we focused on the problem of evaluating multi-class classification accuracy and simulation of multiple classifier performance metrics. Multi-class classifiers for sentiment analysis involved many challenges, whereas previous research narrowed to the binary classification model since it provides higher accuracy when dealing with text data. Thus, we take inspiration from the non-linear Support Vector Machine to modify the algorithm by embedding dynamic hyperplanes representing multiple class labels. Then we analyzed the performance of multi-class classifiers using macro-accuracy, micro-accuracy and several other metrics to justify the significance of our algorithm enhancement. Furthermore, we hybridized Enhanced Convolution Neural Network (ECNN) with Dynamic Support Vector Machine (DSVM) to demonstrate the effectiveness and efficiency of the classifier towards multi-class text data. We performed experiments on three hybrid classifiers, which are ECNN with Binary SVM (ECNN-BSVM), and ECNN with linear Multi-Class SVM (ECNN-MCSVM) and our proposed algorithm (ECNNDSVM). Comparative experiments of hybrid algorithms yielded 85.12 % for single metric accuracy; 86.95 % for multiple metrics on average. As for our modified algorithm of the ECNN-DSVM classifier, we reached 98.29 % micro-accuracy results with an f-score value of 98 % at most. For the future direction of this research, we are aiming for hyperplane optimization analysis.

Effective Hand Gesture Recognition by Key Frame Selection and 3D Neural Network

  • Hoang, Nguyen Ngoc;Lee, Guee-Sang;Kim, Soo-Hyung;Yang, Hyung-Jeong
    • 스마트미디어저널
    • /
    • 제9권1호
    • /
    • pp.23-29
    • /
    • 2020
  • This paper presents an approach for dynamic hand gesture recognition by using algorithm based on 3D Convolutional Neural Network (3D_CNN), which is later extended to 3D Residual Networks (3D_ResNet), and the neural network based key frame selection. Typically, 3D deep neural network is used to classify gestures from the input of image frames, randomly sampled from a video data. In this work, to improve the classification performance, we employ key frames which represent the overall video, as the input of the classification network. The key frames are extracted by SegNet instead of conventional clustering algorithms for video summarization (VSUMM) which require heavy computation. By using a deep neural network, key frame selection can be performed in a real-time system. Experiments are conducted using 3D convolutional kernels such as 3D_CNN, Inflated 3D_CNN (I3D) and 3D_ResNet for gesture classification. Our algorithm achieved up to 97.8% of classification accuracy on the Cambridge gesture dataset. The experimental results show that the proposed approach is efficient and outperforms existing methods.

Gamma 다층 신경망을 이용한 비선형 적응예측 (Nonlinear Prediction using Gamma Multilayered Neural Network)

  • 김종인;고일환;최한고
    • 융합신호처리학회논문지
    • /
    • 제7권2호
    • /
    • pp.53-59
    • /
    • 2006
  • 동적 신경망은 시스템 식별과 신호예측과 같이 temporal 신호처리가 요구되는 여러 분야에서 적용되어 왔다. 본 논문에서는 신경망의 동특성을 향상시키기 위해 순방향 다층 신경망의 히든 층에 감마(Gamma) 메모리 커넬을 사용하는 감마 신경망(GAM)을 제안하고, 적응필터로 제안된 신경망을 사용하여 비선형 적응예측을 다루고 있다. 제안된 신경망은 비선형 신호예측을 통해 평가되었으며, 예측성능의 상대적인 비교를 위해 순방향 신경망(FNN)과 리커런트 신경망(RNN)과 비교하였다. 시뮬레이션 결과에 의하면 GAM 신경망은 수렴속도와 예측의 정확도에서 이러한 신경망보다 더 우수한 동작을 수행함으로써, 제안된 신경망이 기존의 다층 신경망보다 비정적 신호에 대한 비선형 예측에 더 효과적인 예측모델임을 확인하였다.

  • PDF

신경망을 이용한 이동 로봇의 실시간 고속 정밀제어 (High Speed Precision Control of Mobile Robot using Neural Network in Real Time)

  • 주진화;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제5권1호
    • /
    • pp.95-104
    • /
    • 1999
  • In this paper we propose a fast and precise control algorithm for a mobile robot, which aims at the self-tuning control applying two multi-layered neural networks to the structure of computed torque method. Through this algorithm, the nonlinear terms of external disturbance caused by variable task environments and dynamic model errors are estimated and compensated in real time by a long term neural network which has long learning period to extract the non-linearity globally. A short term neural network which has short teaming period is also used for determining optimal gains of PID compensator in order to come over the high frequency disturbance which is not known a priori, as well as to maintain the stability. To justify the global effectiveness of this algorithm where each of the long term and short term neural networks has its own functions, simulations are peformed. This algorithm can also be utilized to come over the serious shortcoming of neural networks, i.e., inefficiency in real time.

  • PDF

PCA를 이용한 다중 컴포넌트 신경망 구조설계 및 학습 (Multiple component neural network architecture design and learning by using PCA)

  • 박찬호;이현수
    • 전자공학회논문지B
    • /
    • 제33B권10호
    • /
    • pp.107-119
    • /
    • 1996
  • In this paper, we propose multiple component neural network(MCNN) which learn partitioned patterns in each multiple component neural networks by reducing dimensions of input pattern vector using PCA (principal component analysis). Procesed neural network use Oja's rule that has a role of PCA, output patterns are used a slearning patterns on small component neural networks and we call it CBP. For simply not solved patterns in a network, we solves it by regenerating new CBP neural networks and by performing dynamic partitioned pattern learning. Simulation results shows that proposed MCNN neural networks are very small size networks and have very fast learning speed compared with multilayer neural network EBP.

  • PDF

인공신경망 Feedforward 제어기를 이용한 좌심실 보조장치의 제어실험 (Control of Left Ventricular Assist Device Using Neural Network Feedforward Controller)

  • 정성택;김훈모;김상현
    • 한국정밀공학회지
    • /
    • 제15권4호
    • /
    • pp.83-90
    • /
    • 1998
  • In this paper, we present neural network for control of Left Ventricular Assist Device(LVAD) system with a pneumatically driven mock circulation system. Beat rate(BR), Systole-Diastole Rate(SDR) and flow rate are collected as the main variables of the LVAD system. System modeling is completed using the neural network with input variables(BR, SBR, their derivatives, actual flow) and output variable(actual flow). It is necessary to apply high perfomance control techniques, since the LVAD system represent nonlinear and time-varing characteristics. Fortunately. the neural network can be applied to control of a nonlinear dynamic system by learning capability In this study, we identify the LVAD system with neural network and control the LVAD system by PID controller and neural network feedforward controller. The ability and effectiveness of controlling the LVAD system using the proposed algorithm will be demonstrated by experiment.

  • PDF

신경회로망을 이용한 AUV의 시스템 동정화 및 응용 (System Idenification of an Autonomous Underwater Vehicle and Its Application Using Neural Network)

  • 이판묵;이종식
    • 한국해양공학회지
    • /
    • 제8권2호
    • /
    • pp.131-140
    • /
    • 1994
  • Dynamics of AUV has heavy nonlinearities and many unknown parameters due to its bluff shape and low cruising speed. Intelligent algorithms, therefore, are required to overcome these nonlinearities and unknown system dynamics. Several identification techniques have been suggested for the application of control of underwater vehicles during last decade. This paper applies the neural network to identification and motion control problem of AUVs. Nonlinear dynamic systems of an AUV are identified using feedforward neural network. Simulation results show that the learned neural network can generate the motion of AUV. This paper, also, suggest an adaptive control scheme up-dates the controller weights with reference model and feedforward neural network using error back propagation.

  • PDF

웨이블릿 신경 회로망을 이용한 이동 로봇의 경로 추종 제어 (Path Tracking Control Using a Wavelet Neural Network for Mobile Robots)

  • 오준섭;박진배;최윤호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 D
    • /
    • pp.2414-2416
    • /
    • 2003
  • In this raper, we present a Wavelet Neural Network(WNN) approach to the solution of the tracking problem for mobile robots that possess complexity, nonlinearity and uncertainty. The neural network is constructed by the wavelet orthogonal decomposition to form a wavelet neural network that can overcome the problems caused by local minima of optimization and various uncertainties. This network structure is helpful to determine the number of the hidden nodes and the initial value of weights with compact structure. In our control method, the control signals are directly obtained by minimizing the difference between the reference track and the pose of a mobile robot that is controlled through a wavelet neural network. The control process is a dynamic on-line process that uses the wavelet neural network trained by the gradient-descent method. Through computer simulations, we demonstrate the effectiveness and feasibility of the proposed control method.

  • PDF

카오틱 신경망을 이용한 적응제어에 관한 연구 (A study on the Adaptive Neural Controller with Chaotic Neural Networks)

  • Sang Hee Kim;Won Woo Park;Hee Wook Ahn
    • 융합신호처리학회논문지
    • /
    • 제4권3호
    • /
    • pp.41-48
    • /
    • 2003
  • 본 논문은 개선된 카오틱 신경망을 이용한 비선형 시스템의 적응제어에 관한 것이다. 개선된 카오틱 신경망은 기존의 카오틱 신경망을 간략화하며 동적 특성을 강화하기 위하여 제안하였다 또한 새로운 동적 역전파 학습방법을 개발하였다. 제안된 신경회로망은 다변수 시스템의 시스템식별과 신경망 적응제어 시스템에 적용하였다. 제안된 신경망은 비선형 동적시스템에 우수한 적응성을 가지므로 시뮬레이션 결과는 우수한 성능을 보였다.

  • PDF

이동 로봇의 군집 제어를 위한 PID 제어기의 적응 신경 회로망 보상기 설계 (Design of PID Controller with Adaptive Neural Network Compensator for Formation Control of Mobile Robots)

  • 김용백;박진현;최영규
    • 한국정보통신학회논문지
    • /
    • 제18권3호
    • /
    • pp.503-509
    • /
    • 2014
  • 본 논문에서는 이동 로봇의 군집 제어를 위해 실시간 적응 신경 회로망 보상기를 갖는 PID 제어기를 제안한다. 전체 제어 시스템은 선도-추종 로봇 접근법에 의한 기구학 제어기와 이동 로봇의 동역학을 고려한 동적 제어기로 구성되어 있다. 동적 제어기는 PID 제어기에 동특성 변화를 보상하고 성능을 개선시키기 위해 실시간 학습 기능을 가진 신경 회로망 보상기로 구성하였다. 모의실험을 통해 원형 궤적과 직선 궤적에 대해 PID 제어기와 신경 회로망 보상기의 성능을 비교하였다. 이를 통해 실시간 학습 기능을 가진 신경 회로망 보상기가 PID 제어기의 성능을 향상시킴으로써 군집 제어에서 추종 로봇의 추종 성능을 향상시키는 것을 확인하였다.