• Title/Summary/Keyword: Dynamic motions

Search Result 976, Processing Time 0.024 seconds

Soft-$golf^{TM}$ Shaft Kick Point and Stiffness due to the Difference in Performance Analysis (소프트 골프 샤프트의 킥 포인트와 강성의 차이에 따른 성능 분석)

  • Oh, H.Y.;Yu, M.;Kim, S.H.;Jang, J.H.;Kim, N.G.;Kim, D.W.
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.3
    • /
    • pp.227-233
    • /
    • 2010
  • This study analyzed performance according to kick point and stiffness of Soft-$golf^{TM}$ shaft. This research team developed soft-$golf^{TM}$ as a new fusion sports with similar motions with golf and it can be learned safely for all age groups in 2002. The head of Soft-$golf^{TM}$ club is made of zinc alloy and has a mesh or a grid structure, and shaft uses carbon graphite to reduce the total weight of the club. To improve carry distance and to assure consistency of a ball during Soft-$golf^{TM}$ swing, this study manufactured shaft with various kick points (low, middle and high) and stiffness (stiff, regular, lady, morelady) and analyzed a swing motion with characteristics of each shaft presented in a dynamic condition such as a ball's speed, a head's torsion angle and a ball's deviation with ProAnalyst program through a high-speed camera taking pictures using a swing machine robot system(Robo-7). From all of the results, this study determined an appropriate shaft of Soft-$golf^{TM}$.

Painterly Stroke Generation using Object Motion Analysis (객체의 움직임 해석을 이용한 회화적 스트로크 생성 방법)

  • Lee, Ho-Chang;Seo, Sang-Hyun;Ryoo, Seung-Tack;Yoon, Kyung-Hyun
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.37 no.4
    • /
    • pp.239-245
    • /
    • 2010
  • Previous painterly rendering techniques normally use image gradients for stroke generation. Although image gradients are useful for expressing object shapes, it is difficult to express the flow or movements of objects of objects. In real painting, the use of brush strokes corresponding to the actual movement of objects allows viewers to recognize objects’ motion better and express the liveliness of the objects much more. In this paper, we propose a novel painterly stroke generation algorithm to express dynamic objects based on their motion information. We first extract motion information (magnitude, direction) of a scene from a set of image sequences from the same view. Then the motion directions are used for determining stroke orientations in the regions with significant motions. Where little motion is observed, image gradients are used for determining stroke orientations. Our algorithm is useful for realistically and dynamically representing moving objects.

Training Avatars Animated with Human Motion Data (인간 동작 데이타로 애니메이션되는 아바타의 학습)

  • Lee, Kang-Hoon;Lee, Je-Hee
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.4
    • /
    • pp.231-241
    • /
    • 2006
  • Creating controllable, responsive avatars is an important problem in computer games and virtual environments. Recently, large collections of motion capture data have been exploited for increased realism in avatar animation and control. Large motion sets have the advantage of accommodating a broad variety of natural human motion. However, when a motion set is large, the time required to identify an appropriate sequence of motions is the bottleneck for achieving interactive avatar control. In this paper, we present a novel method for training avatar behaviors from unlabelled motion data in order to animate and control avatars at minimal runtime cost. Based on machine learning technique, called Q-teaming, our training method allows the avatar to learn how to act in any given situation through trial-and-error interactions with a dynamic environment. We demonstrate the effectiveness of our approach through examples that include avatars interacting with each other and with the user.

Fluid-structure-soil interaction analysis of cylindrical liquid storage tanks subjected to horizontal earthquake loading

  • Kim, Jae-Min;Chang, Soo-Hyuk;Yun, Chung-Bang
    • Structural Engineering and Mechanics
    • /
    • v.13 no.6
    • /
    • pp.615-638
    • /
    • 2002
  • This paper presents a method of seismic analysis for a cylindrical liquid storage structure considering the effects of the interior fluid and exterior soil medium in the frequency domain. The horizontal and rocking motions of the structure are included in this study. The fluid motion is expressed in terms of analytical velocity potential functions, which can be obtained by solving the boundary value problem including the deformed configuration of the structure as well as the sloshing behavior of the fluid. The effect of the fluid is included in the equation of motion as the impulsive added mass and the frequency-dependent convective added mass along the nodes on the wetted boundary of the structure. The structure and the near-field soil medium are represented using the axisymmetric finite elements, while the far-field soil is modeled using dynamic infinite elements. The present method can be applied to the structure embedded in ground as well as on ground, since it models both the soil medium and the structure directly. For the purpose of verification, earthquake response analyses are performed on several cases of liquid tanks on a rigid ground and on a homogeneous elastic half-space. Comparison of the present results with those by other methods shows good agreement. Finally, an application example of a reinforced concrete tank on a horizontally layered soil with a rigid bedrock is presented to demonstrate the importance of the soil-structure interaction effects in the seismic analysis for large liquid storage tanks.

Earthquake Resistant Performance of a High-rise Shear Wall Apartment Based on Nonlinear Time History Response Analysis (동적 탄소성 지진응답해석에 의한 고층 벽식 아파트의 내진성능 검토)

  • 박성수
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.1
    • /
    • pp.1-8
    • /
    • 1999
  • Dynamic elastoplastic LPM (lumped parameter mass) analyses are carried out in order to investigate the seismic resistant performance of a typical high-rise shear wall apartment subjected to several earthquakes. Three-dimensional nonlinear pushover analysis is adopted to estimate initial elastic stiffness, yielding strength and post-yielding stiffness of each story for the time history analysis of LPM shear model. For the hysteresis of each story, Clough and bilinear models are used with the input of four recorded earthquake ground motions of EI Centro 1940 NS, Taft 1952 EW, Hachinohe 1968 NS and Kobe 1995 NS, of which the amplitudes are scaled down to have the same maximum ground velocity of 12 kine. The result shows that yieldings take place in most storys of the building, i.e. the earthquake resistant capacity of this high-rise shear wall apartment is not sufficient at the event of earthquake M=5~6.

  • PDF

Rotordynamic Characteristics of Floating Ring Seals in Rocket Turbopumps

  • Tokunaga, Yuichiro;Inoue, Hideyuki;Hiromatsu, Jun;Iguchi, Tetsuya;Kuroki, Yasuhiro;Uchiumi, Masaharu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.3
    • /
    • pp.194-204
    • /
    • 2016
  • Floating ring seals offer an opportunity to reduce leakage flows significantly in rotating machinery. Accordingly, they have been applied successfully to rotating machinery within the last several decades. For rocket turbopump applications, fundamental behavior and design philosophy have been revealed. However, further work is needed to explore the rotordynamic characteristics associated with rotor vibrations. In this study, rotordynamic forces for floating ring seals under rotor's whirling motions are calculated to elucidate rotordynamic characteristics. Comparisons between numerical simulation results and experiments demonstrated in our previous report are carried out. The three-dimensional Reynolds equation is solved by the finite-difference method to calculate hydrodynamic pressure distributions and the leakage flow rate. The entrance loss at the upstream inlet of the seal ring is calculated to estimate the Lomakin effect. The friction force at the secondary seal surface is also considered. Numerical simulation results showed that the rotordynamic forces of this type of floating ring seal are determined mainly by the friction force at the secondary seal surface. The seal ring is positioned almost concentrically relative to the rotor by the Lomakin effect. Numerical simulations agree quite well with the experimental results.

Dynamic Response Analysis of Offshore Guyed Tower Subjected to Strong Earthquake under Moderate Random Waves (지진과 파랑하중을 동시에 받는 해양 가이드 타워의 비정상 동적 응답해석)

  • Ryu, Chung Son;Yun, Chung Bang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.4
    • /
    • pp.65-75
    • /
    • 1993
  • Presented is a method for nonstationary response analysis of an offshore guyed tower subjected to strong earthquake motions under moderate random waves and current loadings. By taking the time varying envelope function and the auto-correlation function of the ground acceleration in terms of complex exponential functions, an analytical procedure is developed for computing time varying variances of the tower response. The stationary responses due to small random waves are obtained by using frequency domain method, and the results are combined with the nonstationary results due to earthquakes. Finally, the expected maximum responses are estimated. Through the example analyses, the nonstationary method developed in this study is verified, and the contributions of the earthquake, wave and current loadings to the total maximum response are investigated.

  • PDF

Dynamic Analysis of a Rotating System Due to the Effect of Ball Bearing Waviness (I)-Vibration Analysis- (Waviness가 있는 볼베어링으로 지지된 회전계의 동특성해석 (I) -진동 해석-)

  • Jeong, Seong-Weon;Jang, Gun-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.12
    • /
    • pp.2636-2646
    • /
    • 2002
  • This research presents an analytical model to investigate vibration due to ball bearing waviness in a rotating system supported by two or more ball bearings, taking account of the centrifugal force and gyroscopic moment of the ball. The waviness of rolling elements is modeled by the sinusoidal function, and it is incorporated into the position vectors of the race curvature center. The Hertzian con tact theory is applied to calculate the elastic deflection and nonlinear contact force while the rotor has translational and angular motions. Both the centrifugal force and gyroscopic moment of the ball and the waviness of the rolling elements are included in the kinematic constraints and force equilibrium equations of a ball to derive the nonlinear governing equations of the rotor, which are solved by using the Runge-Kutta-Fehlberg algorithm to determine the new position of the rotor. The proposed model is validated by the comparison of the results of the prior researchers. This research shows that the centrifugal force and gyroscopic moment of the ball plays the important role in determining the bearing frequencies, i.e. the principal frequencies, their harmonics and the sideband frequencies resulting from the waviness of the rolling elements of ball bearing. It also shows that the bearing vibration frequencies are generated by the waviness interaction not only between the rolling elements of one ball bearing but also between those of two or more ball bearings constrained by the rotor.

Dynamic Analysis of a Tension Leg Platform Using Morison's Equation (Morison 방정식을 이용한 Tension Leg Platform의 동정해석)

  • Pyun, Chong Kun;Park, Woo Sun;Yun, Chung Bang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.3
    • /
    • pp.223-228
    • /
    • 1987
  • An efficient method for the calculation of wave forces on a tension leg platform(TLP) is presented in this paper. It is based on the Morison's equation with two corrective terms. One is the reduction of the inertia forces on the vertical columns in order to include the wave diffraction effect particularly for small wave conditions. The other is the inclusion of the hydrodynamic forces acting at the bottoms of the columns. Numerical studies are carried out for a TLP in 1000 ft water with two different wave heading angles($0^{\circ}$ and $45^{\circ}$). The reponse amplitude operators(RAO's) for the TLP motions and top tether tension variations are obtained by the present method and the theoretically more accurate method based on the diffraction theory. A comparison has been made between the results obtained by two methods.

  • PDF

Demands and distribution of hysteretic energy in moment resistant self-centering steel frames

  • Lopez-Barraza, Arturo;Ruiz, Sonia E.;Reyes-Salazar, Alfredo;Bojorquez, Eden
    • Steel and Composite Structures
    • /
    • v.20 no.5
    • /
    • pp.1155-1171
    • /
    • 2016
  • Post-tensioned (PT) steel moment resisting frames (MRFs) with semi-rigid connections (SRC) can be used to control the hysteretic energy demands and to reduce the maximum inter-story drift (${\gamma}$). In this study the seismic behavior of steel MRFs with PT connections is estimated by incremental nonlinear dynamic analysis in terms of dissipated hysteretic energy ($E_H$) demands. For this aim, five PT steel MRFs are subjected to 30 long duration earthquake ground motions recorded on soft soil sites. To assess the energy dissipated in the frames with PT connections, a new expression is proposed for the hysteretic behavior of semi-rigid connections validated by experimental tests. The performance was estimated not only for the global $E_H$ demands in the steel frames; but also for, the distribution and demands of hysteretic energy in beams, columns and connections considering several levels of deformation. The results show that $E_H$ varies with ${\gamma}$, and that most of $E_H$ is dissipated by the connections. It is observed in all the cases a log-normal distribution of $E_H$ through the building height. The largest demand of $E_H$ occurs between 0.25 and 0.5 of the height. Finally, an equation is proposed to calculate the distribution of $E_H$ in terms of the normalized height of the stories (h/H) and the inter-story drift.