• 제목/요약/키워드: Dynamic material property

검색결과 188건 처리시간 0.026초

Dynamic strain aging 에 의한 국소변형의 perturbation analysis (Perturbation analysis of localized deformation by dynamic strain aging)

  • 양승용
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.96-100
    • /
    • 2003
  • In the tensile loading of sheet metals made from polycrystalline aluminum alloys, a single deformation band appears inclined to the elongation axis in the early stage of plastic deformation, and symmetric double bands are observed in the later stage. This character of the localized deformation bands has been analyzed by a perturbation method. Macroscopic slip modes composed of slip planes and slip directions were assumed to describe the tensile and shear strains. Along time integration path, the value of the perturbation growth parameter was checked to find at which angle to the elongation axis the localized deformation bands are generated. It was shown that the mode of the localized deformation is related to asymmetry of material property.

  • PDF

동하중을 받는 복합재의 파동전파에 관한 연구 (Wave Propagation of Composite Materials Subjected to Dynamic Load)

  • 안국찬;정인조;정대식
    • 한국기계가공학회지
    • /
    • 제11권4호
    • /
    • pp.138-146
    • /
    • 2012
  • This research is to analyze the wave propagation characteristics of anisotropic materials subjected to the low-velocity impact. For this purpose, a higher-order finite element program is used to simulate the dynamic behaviors according to the changes of material property, stacking sequence and dimension etc.. Materials for simulation are composed of $[0^{\circ}]_{10s}$, $[45^{\circ}/-45^{\circ}]_{5s}$ and $[90^{\circ}]_{10s}$ stacking sequences. Finally, the results of this simulation are compared with those of wave propagation theory and then the impact responses and wave propagation phenomena are investigated.

대형 해상풍력발전용 필라멘트 와인딩 복합재 타워의 동적 특성에 관한 연구 (Dynamic Characteristics Analysis of Filament-wound Composite Towers for Large Scale Offshore Wind-Turbine)

  • 한정영;홍철현;정재훈;문병영
    • 한국유체기계학회 논문집
    • /
    • 제15권4호
    • /
    • pp.55-60
    • /
    • 2012
  • The purpose of this study is to investigate the buckling load of filament-wound composite towers for large scale wind-turbine using finite element method(FEM). To define material properties, we used both the effective property method and the stacking properties method. The effective properties method is to assume that composite consists of one ply. The stacking properties method is to assume that composite consists of some stacked plies. First, linear buckling analysis of the tower, filament-wounded with angles of [${\pm}30$] was carried out by two methods for composite material properties, the stacking method and the effective method. and FE analysis was performed for the composite towers according to filament winding angles of [${\pm}30$], [${\pm}45$], [${\pm}60$]. FE analysis results using the stacking properties of the composite were in good agreement with the results by the effective properties. The difference between FEM results by material properties methods was approximately 0~2.3% in buckling Analysis and approximately 0~0.6% in modal analysis. And above the angle of [${\pm}60$], there was a little change of buckling load.

방진마운트 개발을 위한 와이어 메쉬 탄성계수 추출 (Elastic Modulus Extraction of Wire Mesh for Vibration Mount Development)

  • 김태연;신윤호;문석준;정병창;이태진
    • 한국소음진동공학회논문집
    • /
    • 제26권7호
    • /
    • pp.806-813
    • /
    • 2016
  • To alleviate the vibration problem or to satisfy the required criteria for manifesting the guaranteed performance of precise equipment, various vibration isolation materials or apparatus, such as viscoelastic material, air and coil spring, have been developed and applied. Among them, a wire mesh material is regarded as one of the good candidate for reducing the vibration in terms of moderate material price, easy shape machining and long life cycle without the property deterioration induced by the aging or environmental effects. In this paper, prior to wire mesh isolator design, the static and dynamic elastic modulus of wire mesh materials are extracted from the experiment by the simple shaped cylindrical specimens and their characteristics for applying to vibration isolator design are examined. The simple shaped specimens were made as considering the design parameters of a wire mesh mount; i.e. the density, wire diameter and wire mesh slope, and the sensitivity analysis were also performed from a view point of the extracted elastic modulus.

Some aspects of load-rate sensitivity in visco-elastic microplane material model

  • Kozar, Ivica;Ozbolt, Josko
    • Computers and Concrete
    • /
    • 제7권4호
    • /
    • pp.317-329
    • /
    • 2010
  • The paper describes localization of deformation in a bar under tensile loading. The material of the bar is considered as non-linear viscous elastic and the bar consists of two symmetric halves. It is assumed that the model represents behavior of the quasi-brittle viscous material under uniaxial tension with different loading rates. Besides that, the bar could represent uniaxial stress-strain law on a single plane of a microplane material model. Non-linear material property is taken from the microplane material model and it is coupled with the viscous damper producing non-linear Maxwell material model. Mathematically, the problem is described with a system of two partial differential equations with a non-linear algebraic constraint. In order to obtain solution, the system of differential algebraic equations is transformed into a system of three partial differential equations. System is subjected to loadings of different rate and it is shown that localization occurs only for high loading rates. Mathematically, in such a case two solutions are possible: one without the localization (unstable) and one with the localization (stable one). Furthermore, mass is added to the bar and in that case the problem is described with a system of four differential equations. It is demonstrated that for high enough loading rates, it is the added mass that dominates the response, in contrast to the viscous and elastic material parameters that dominated in the case without mass. This is demonstrated by several numerical examples.

레벨셋 기법을 이용한 전기습윤 현상의 동적 거동에 대한 해석 및 물성 보간 방법에 대한 고찰 (ANALYSIS OF ELECTROWETTING DYNAMICS WITH LEVEL SET METHOD AND ASSESSMENT OF PROPERTY INTERPOLATION METHODS)

  • 박준권;강관형
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.551-555
    • /
    • 2010
  • Electrowetting is a versatile tool to handle tiny droplets and forms a backbone of digital microfluidics. Numerical analysis is necessary to fully understand the dynamics of electrowetting, especially in designing electrowetting-based devices, such as liquid lenses and reflective displays. We developed a numerical method to analyze the general contact-line problems, incorporating dynamic contact angle models. The method is based on the conservative level set method to capture the interface of two fluids without loss of mass. We applied the method to the analysis of spreading process of a sessile droplet for step input voltages and oscillation of the droplet for alternating input voltages in electrowetting. The result was compared with experimental data. It is shown that contact line friction significantly affects the contact line motion and the oscillation amplitude. The pinning process of contact line was well represented by including the hysteresis effect in the contact angle models. In level set method, in the mean time, material properties are made to change smoothly across an interface of two materials with different properties by introducing an interpolation or smoothing scheme. So far, the weighted arithmetic mean (WAM) method has been exclusively adopted in level set method, without complete assessment for its validity. We viscosity, thermal conductivity, electrical conductivity, and permittivity, can be an alternative. I.e., the WHM gives more accurate results than the WAM method in certain circumstances. The interpolation scheme should be selected considering various characteristics including type of property, ratio of property of two fluids, geometry of interface, and so on.

  • PDF

Monitoring in-service performance of fibre-reinforced foamed urethane sleepers/bearers in railway urban turnout systems

  • Kaewunruen, Sakdirat
    • Structural Monitoring and Maintenance
    • /
    • 제1권1호
    • /
    • pp.131-157
    • /
    • 2014
  • Special track systems used to divert a train to other directions or other tracks are generally called 'railway turnout'. A traditional turnout system consists of steel rails, switches, crossings, steel plates, fasteners, screw spikes, timber bearers, ballast and formation. The wheel rail contact over the crossing transfer zone has a dip-like shape and can often cause detrimental impact loads on the railway track and its components. The large impact also emits disturbing noises (either impact or ground-borne noise) to railway neighbors. In a brown-field railway track where an existing aged infrastructure requires renewal or maintenance, some physical constraints and construction complexities may dominate the choice of track forms or certain components. With the difficulty to seek for high-quality timbers with dimensional stability, a methodology to replace aged timber bearers in harsh dynamic environments is to adopt an alternative material that could mimic responses and characteristics of timber in both static and dynamic loading conditions. A critical review has suggested an application of an alternative material called fibre-reinforced foamed urethane (FFU). The full-scale capacity design makes use of its comparable engineering characteristics to timber, high-impact attenuation, high damping property, and a longer service life. A field trial to investigate in-situ behaviours of a turnout grillage system using an alternative material, 'fibre-reinforced foamed urethane (FFU)' bearers, has been carried out at a complex turnout junction under heavy mixed traffics at Hornsby, New South Wales, Australia. The turnout junction was renewed using the FFU bearers altogether with new special track components. Influences of the FFU bearers on track geometry (recorded by track inspection vehicle 'AK Car'), track settlement (based on survey data), track dynamics, and acoustic characteristics have been measured. Operational train pass-by measurements have been analysed to evaluate the effectiveness of the replacement methodology. Comparative studies show that the use of FFU bearers generates higher rail and sleeper accelerations but the damping capacity of the FFU help suppress vibration transferring onto other track components. The survey data analysis suggests a small vertical settlement and negligible lateral movement of the turnout system. The static and dynamic behaviours of FFU bearers appear to equate that of natural timber but its service life is superior.

주기적(週期的) 반복하중(反復荷重)을 받는 벼의 복소(複素)컴프라이언스 (Complex Compliance of Rough Rice Kernel under Cyclic Loading)

  • 김만수;라우정;박종민
    • Journal of Biosystems Engineering
    • /
    • 제17권1호
    • /
    • pp.79-90
    • /
    • 1992
  • Viscoelastic characteristics of agricultural products may be determined through three basic tests ; stress relaxation, creep, and dynamic test. Considering the changeability of living materials, dynamic test in which information is derived in a relatively short time appears to be highly desirable, in which either cyclic stress or cyclic strain is imposed and the remaining quantity (strain or stress) is measured. The periodically varying stress will also result in periodically varying strain which in a viscoelastic material should theoretically be out of phase with the stress, because part of the energy subjected to sample is stored in the material as potential energy and part is dissipated as heat. This behavior results in a complex frequency-dependent compliance denoted by J($i{\omega}$). The complex compliance and therefore the storage compliance, the loss compliance, the phase angle, and percent energy loss for the sample should be obtainable with a given static viscoelastic property of the material under static load. The complex compliance of the rough rice kernel were computed from the Burger's model describing creep behavior of the material which were obtained in the previous study. Also, the effects of cyclic load and moisture content of grain on the dynamic viscoelastic behavior of the samples were analyized. The results obtained from this study were summarized as follows ; 1. The storage compliance of the rough rice kernel slightly decreased with the frequency applied but at above the frequency of 0.1 Hz it was nearly constant with the frequency, and the loss compliance of the sample very rapidly decreased with increase in the frequency on those frequency ranges. 2. It was shown that the storage compliance and the loss compliance of the sample increased with increase in grain moisture content. Effect of grain moisture content on the storage compliance of the sample was highly significant than effect of the frequency applied, but effect of the frequency on the loss compliance of the sample was more significant than effect of grain moisture content. 3. In low moisture content, the percent energy loss of Japonica-type rough rice was much higher than that of Indica-type rough rice, but, in high moisture content, vice versa.

  • PDF

골판지 접착 불량에 대한 전분과 원지 특성의 영향 (Effect of Starch and Base Paper Properties an Adhesion Problem of Corrugated Board)

  • 이진호;박종문;이상현
    • 펄프종이기술
    • /
    • 제38권2호
    • /
    • pp.43-51
    • /
    • 2006
  • Starch is widely used as an adhesive material in the paper and corrugated board industry. The adhesion problem of corrugated board is categorized by two main parts called zipper board and white glue line. The object of this research is to investigate the factors affecting the adhesion problem by the gelatinization of various starch solutions and dynamic penetration properties measurements of various commercial base paper and handsheets. Flow property of starch solution is affected by sodium hydroxide addition and reaction level. Absorption property of commercial base papers and handsheets is affected by sizing and stock composition. Optimum bonding between top/bottom liners and corrugated medium is accomplished by acceptable flow viscosity of mixed starch solution and proper adsorption characteristic of base paper.

Application of graded harmonic FE in the analysis of 2D-FGM axisymmetric structures

  • Karakas, Ali I.;Daloglu, Ayse T.
    • Structural Engineering and Mechanics
    • /
    • 제55권3호
    • /
    • pp.473-494
    • /
    • 2015
  • A graded harmonic finite element formulation based on three-dimensional elasticity theory is developed for the structural analysis of 2D functionally graded axisymmetric structures. The mechanical properties of the axisymmetric solid structures composed of two different metals and ceramics are assumed to vary in radial and axial directions according to power law variations as a function of the volume fractions of the constituents. The material properties of the graded element are calculated at the integration points. Effects of material distribution profile on the static deformation, natural frequency and dynamic response analyses of particular axisymmetric solid structures are investigated by changing the power law exponents. It is observed that the displacements, stresses and natural frequencies are severely affected by the variation of axial and radial power law exponents. Good accuracy is obtained with fewer elements in the present study since Fourier series expansion eliminates the need of finite element mesh in circumferential direction and continuous material property distribution within the elements improves accuracy without refining the mesh size in axial and radial directions.