• Title/Summary/Keyword: Dynamic lifting

Search Result 92, Processing Time 0.021 seconds

Comparison of Muscle Strength for One-hand and Two-hands Lifting Activity (한 손 들기 작업과 양 손 들기 작업의 근력 능력 비교 연구)

  • Kim, Hong-Ki
    • Journal of the Ergonomics Society of Korea
    • /
    • v.26 no.2
    • /
    • pp.35-44
    • /
    • 2007
  • Work-related musculoskeletal disorders (WMSDs) are a major problem in industries in which manual materials handling is performed by workers. To prevent these WMSDs, it is necessary to understand the muscular strength capability and use this knowledge to design job and selection and assignment of workers. Even though two-hands lifting activity of manual materials handling tasks are prevalent at the industrial site, many manual materials handling tasks which require the worker to perform one-hand lifting are also very common at the industrial site and forestry and farming. However, a few researches have been done for one-hand lifting activity of manual materials handling tasks. The objective of this study is to compare one-hand and two-hands lifting strength in terms of static and dynamic strength of the lifting activity for the ranging from the height of knuckle to elbow. It is shown in this study that the isometric lifting strength of one-hand is ranging from 54.7 to 63.3% of the one of two-hands. However, it is found that there is no significant difference between a person's isometric lifting strength for left-hand and right-hand. It is also shown that there is no significant difference between the peak force under the dynamic sub-maximal loading with one-hand and two-hands lifting activity. Similar results were obtained for the peak acceleration and peak velocity under the dynamic sub-maximal loading with one-hand and two-hands lifting activity. Isometric lifting strength at the height of knuckle was ranging from 2 to 3 times of the dynamic peak force during sub-maximal lifting. It is concluded that the dynamic peak forces under the sub-maximal loading are not highly correlated with the isometric lifting strength in similar postures.

Prediction of Peak Back Compressive Forces as a Function of Lifting Speed and Compressive Forces at Lift Origin and Destination - A Pilot Study

  • Greenland, Kasey O.;Merryweather, Andrew S.;Bloswick, Donald S.
    • Safety and Health at Work
    • /
    • v.2 no.3
    • /
    • pp.236-242
    • /
    • 2011
  • Objectives: To determine the feasibility of predicting static and dynamic peak back-compressive forces based on (1) static back compressive force values at the lift origin and destination and (2) lifting speed. Methods: Ten male subjects performed symmetric mid-sagittal floor-to-shoulder, floor-to-waist, and waist-to-shoulder lifts at three different speeds (slow, medium, and fast), and with two different loads (light and heavy). Two-dimensional kinematics and kinetics were captured. Linear regression analyses were used to develop prediction equations, the amount of predictability, and significance for static and dynamic peak back-compressive forces based on a static origin and destination average (SODA) backcompressive force. Results: Static and dynamic peak back-compressive forces were highly predicted by the SODA, with R2 values ranging from 0.830 to 0.947. Slopes were significantly different between slow and fast lifting speeds (p < 0.05) for the dynamic peak prediction equations. The slope of the regression line for static prediction was significantly greater than one with a significant positive intercept value. Conclusion: SODA under-predict both static and dynamic peak back-compressive force values. Peak values are highly predictable and could be readily determined using back-compressive force assessments at the origin and destination of a lifting task. This could be valuable for enhancing job design and analysis in the workplace and for large-scale studies where a full analysis of each lifting task is not feasible.

Lifting Analysis Considering Three Dimensional Dynamic Responses of a Boom based on Finite Element Formulation (유한요소 붐 모델의 3차원 동적 거동을 고려한 리프팅 해석)

  • Park, Kwang-Phil;Cha, Ju-Hwan;Lee, Kyu-Yeul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.8
    • /
    • pp.753-760
    • /
    • 2010
  • In this paper, the lifting analysis of a floating crane with a shipbuilding block is performed. Since floating cranes are operated in ocean waves, six degree-of-freedom motions are considered in the dynamic equations of motions of the floating crane and the block. The boom of the floating crane is considered as an elastic body in the analysis, and is modeled as three dimensional beam based on the finite element formulation. The hydrostatic and hydrodynamic forces by a regular wave are considered as external forces. By solving the equations of motions numerically, the dynamic responses of the floating crane and the block are simulated. The simulation results with different wave directions are compared and the conditions which cause maximum responses are discussed.

Development of an Automation Library in Multi-Body Dynamics Program for Dynamic Structural Analysis of Block Lifting Process (블록의 리프팅 동적 구조해석을 위한 다물체 동역학 프로그램의 내장형 자동화 라이브러리 개발)

  • Jung, Da-un;Cha, Ju-Hwan;Song, Chang-Yong;Lee, Chung-Hyoung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.2
    • /
    • pp.135-143
    • /
    • 2016
  • In this study, an embedded system composed of equipment setting, block importing, scenario setting and output reporting is developed in multi-body dynamics program, ADAMS, for conducting dynamic structural analysis of block lifting process. First, equipment used for block lifting process is set in the simulation environment and the shapes and functions of two lifting beams, and six block loaders are provided as the equipment. Second, the modal analysis result of the lifting block is imported from the static structural analysis system, NASTRAN. Third, the lifting scenarios, such as hoisting, waiting, trolley moving, and wire connecting, are set in the system. Finally, output results in the forms of plots, texts and tables, are reported after the dynamic structural analysis. The test examples conducted in a shipyard are applied into the developed system in various condition and scenarios. The loads at the lug points, the stress contours, and the hot spot tables of the developed system are compared with the result of the static analysis system.

Lifting off simulation of an offshore supply vessel considering ocean environmental loads and lifting off velocity

  • Jeong, Dong-Hoon;Roh, Myung-Il;Ham, Seung-Ho
    • Ocean Systems Engineering
    • /
    • v.5 no.3
    • /
    • pp.181-198
    • /
    • 2015
  • An OSV (Offshore Support Vessel) is being used to install a structure which is laid on its deck or an adjacent transport barge by lifting off the structure with its own crane, lifting in the air, crossing splash zone, deeply submerging, and lastly landing it. There are some major considerations during these operations. Especially, when lifting off the structure, if operating conditions such as ocean environmental loads and lifting off velocity are not suitable, the collision can be occurred due to the relative motion between the structure and the OSV or the transport barge. To solve this problem, this study performs the physics-based simulation of the lifting off step while the OSV installs the structure. The simulation includes the calculation of dynamic responses of the OSV and the structure, including the collision detection between the transport barge and the structure. To check the applicability of the physics-based simulation, it is applied to a problem of the lifting off step by varying the ocean environmental loads and the lifting off velocity. As a result, it is confirmed that the operability of the lifting off step are affected by the conditions.

Comparison of Compressive Forces on Low Back(L5/S1) for One-hand Lifting and Two-hands Lifting Activity

  • Kim, Hong-Ki
    • Journal of the Ergonomics Society of Korea
    • /
    • v.30 no.5
    • /
    • pp.597-603
    • /
    • 2011
  • Objective: The objective of this study was to compare one-hand and two-hands lifting activity in terms of biomechanical stress for the range of lifting heights from 10cm above floor level to knuckle height. Background: Even though two-hands lifting activity of manual materials handling tasks are prevalent at the industrial site, many manual materials handling tasks which require the worker to perform one-hand lifting are also very common at the industrial site and forestry and farming. Method: Eight male subjects were asked to perform lifting tasks using both a one-handed as well as a two-handed lifting technique. Trunk muscle electromyographic activity was recorded while the subjects performed the lifting tasks. This information was used as input to an EMG-assisted free-dynamic biomechanical model that predicted spinal loading in three dimensions. Results: It was shown that for the left-hand lifting tasks, the values of moment, lateral shear force, A-P shear force, and compressive force were increased by the average 43%, as the workload was increased twice from 7.5kg to 15.0kg. For the right-hand lifting task, these were increased by the average 34%. For the two-hands lifting tasks, these were increased by the average 25%. The lateral shear forces at L5/S1 of one-hand lifting tasks, notwithstanding the half of the workload of two-hands lifting tasks, were very high in the 300~317% of the one of two-hands lifting tasks. The moments at L5/S1 of one-hand lifting tasks were 126~166% of the one of two-hands lifting tasks. Conclusion: It is concluded that the effect of workload for one-hand lifting is greater than two-hands lifting. It can also be concluded that asymmetrical effect of one-hand lifting is much greater than workload effect. Application: The results of this study can be used to provide guidelines of recommended safe weights for tasks involved in one-hand lifting activity.

Launching Simulation of Integrated Mining System for Deep-Seabed Mineral Resources (심해저 광물자원 채광시스템의 설치 거동 해석)

  • Hong, Sup;Kim, Hyung-Woo;Choi, Jong-Su;Yeu, Tae-Kyeong
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.315-318
    • /
    • 2006
  • This paper concerns about coupled dynamic analysis of the deep-seabed mining system in launching operation. The dynamic behavior of mining system consisting of lifting pipe, buffer station, flexible conduit and self-propelled miner is simulated in time domain. The launching operation is divided into four critical phases: (1) deployment of miner and flexible conduit, (2) deployment of lifting pipe, flexible conduit and miner, (3) touch-down of miner, (4) final launching. The dynamic responses of sub-systems - miner, flexible conduit, buffer and lifting pipe - are analyzed in each launching phase. According to the changing periods of forced excitation at the top, the dynamic responses of sub-systems are diverse in their characteristics. It has been shown that the total integrated responses of sub-systems are strongly affected by the design parameters. Especially, the principal dimensions of flexible conduit seem to be significant in determining of the global response. Based on the simulation results, safe operation conditions are investigated.

  • PDF

The Effect of Noise and Background Music on the Trunk Muscle Fatigue during Dynamic Lifting and Lowering Tasks (들기/내리기 작업 시 소음과 배경음악이 몸통근육 피로도에 미치는 영향)

  • Kim, Jung-Yong;Shin, Hyun-Joo;Lee, In-Jae
    • Journal of the Ergonomics Society of Korea
    • /
    • v.27 no.3
    • /
    • pp.15-22
    • /
    • 2008
  • The purpose of this study was to define the effects of noise and background music on the trunk muscle fatigue during dynamic lifting and lowering tasks. Six healthy male subjects with no prior history of low back disorders participated in this study. The participants were exposed to two levels of background noise such as 40dB noise and 90dB noise and three levels of background music such as no music, slow music, and fast music. Six different combinations of background noise and background music were played while the participants were performing the lifting task at 15% level of Maximum Voluntary Contraction. Electromyography signals from six muscles were collected and fatigue levels were analyzed quantitatively. In results, the 90dB noise increased trunk muscle fatigue and slowed down the recovery. The trunk muscle fatigue was the lowest when the fast music was played for as background. After recovery, the 90dB noise increased trunk muscle fatigue. The trunk muscle fatigue was the lowest when the slow music was played for as background. The results can be useful to manage the cumulative fatigue of trunk muscles due to background noise and music during repetitive lifting and lowering tasks in industry.

Dynamic Analysis of Topside Module in Lifting Installation Phase

  • Lee, Jong-Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.4
    • /
    • pp.7-11
    • /
    • 2011
  • The installation phase for a topside module suggested can be divided into 9 stages, which include start, pre-lifting, lifting, lifted, rotating, positioning, lowering, mating, and end of installation. The transfer of the topside module from a transport barge to a crane vessel takes place in the first three stages, from start to lifting, while the transfer of the module onto a floating spar hull occurs in the last three stages, from lowering to the end. The coupled multi-body motions are calculated in both calm water and in irregular waves with significant wave height (1.52m), with suggested force equilibrium diagrams. The effects of the hydrodynamic interactions between the crane vessel and barge during the lifting stage have been considered. The internal forces caused by the load transfer and ballasting are derived for the lifting phases. The results of these internal forces for the calm water condition are compared with those in the irregular sea condition. Although the effect of pitch motion on the relative vertical motion between the deck of the floating structure and the topside module is significant in the lifting phases, the internal force induced pitch motion is too small to show its influence. However, the effect of the internal force on the wave-induced heave responses in the lifting phases is noticeable in the irregular sea condition because the transfer mass-induced draught changes in the floating structure are observed to have higher amplitudes than the external force induced responses.

Comparison of Biomechanical Stress on Low Back(L5/S1) for One-hand Lifting and Lowering Activity (한 손 들기 작업과 내리기 작업의 요추부위(L5/S1) 부하에 대한 비교 연구)

  • Kim, Hong-Ki
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.37 no.4
    • /
    • pp.72-81
    • /
    • 2014
  • Even though two-hands lifting/lowering activity of manual materials handling tasks are prevalent at the industrial site, many manual materials handling tasks which require the worker to perform one-hand lifting/lowering are also very common at the industrial site, forestry, farming, and daily life. The objective of this study was to compare one-hand lowering activity to lifting activity in terms of biomechanical stress for the range of lowering heights from knuckle height to 10cm above floor level with two workload 7.5kg and 15.0kg. Eight male subjects with LMM were asked to perform lifting/lowering tasks using both a one-handed (left-hand and right-hand) as well as a two-handed technique. Spinal loading was estimated through an EMG-assisted free-dynamic biomechanical model. The biomechanical stress of one-hand lowering activity was shown to be 43% lower than that of one-hand lifting activity. It was claimed that the biomechanical stress for one-hand lifting/lowering activity is almost twice (194%) of the one for two-hands lifting/lowering activity. It was also found that biomechanical stress by one-hand lowering/lifting activity with the half workload of two-hands lowering/lifting activity was greater than that of the two-hands lowering/lifting activity. Therefore, it might be a risk to consider the RWL of one-hand lowering/lifting activity to simply be a half of the RWL of two-hands lowering/lifting activity recommended by NIOSH.