• Title/Summary/Keyword: Dynamic heat load simulation

Search Result 42, Processing Time 0.03 seconds

A Study of Dynamic Simulation of a Hybrid Absorption Chiller Utilizing Solar Power (태양열을 이용한 일이중 겸용 흡수식 냉온수기 동적성능 모사연구)

  • Shin, Young-Gy;Seo, Jung-A;Woo, Sung-Min;Kim, Hyo-Sang
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.967-972
    • /
    • 2009
  • A dynamic model has been developed to investigate the operability of a single and double-effect solar energy assisted parallel type absorption chiller. In the study, main components and fluid transport mechanism were modeled. And solar radiation and the solar collector also were also modeled along with its control design. The model was run for the single mode with solar energy supply only and the solar/gas driving double effect mode. From the simulation results, it was found that the present configuration of the chiller is not capable of regulating solution flow rates according to variable solar energy input. And the issues of the excessive circulation flowrate and the mismatch between available solar power and cooling load discourages the use of the single mode, but the dual use of gas and solar power is recommendable in view of controllability and enhanced COP.

  • PDF

Dynamic Simulation of Transient Operations of a Solar Power-Assisted Absorption Chiller (태양열 보조열원을 이용한 흡수식 시스템의 동적 시뮬레이션에 의한 과도운전 특성 평가)

  • Shin, Young-Gy;Seo, Jung-A;Woo, Sung-Min
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.2
    • /
    • pp.78-85
    • /
    • 2010
  • A dynamic model has been developed to investigate the operability of a single and double-effect solar energy assisted parallel type absorption chiller. In the study, main components and fluid transport mechanism were modeled. And solar radiation and the solar collector were also modeled along with its control design. The model was run for the single mode with solar energy supply only and the solar/gas driving double effect mode. From the simulation results, it was found that the present configuration of the chiller is not capable of regulating solution flow rates according to variable solar energy input. And the issues of the excessive circulation flow rate and the mismatch between available solar power and cooling load discourages the use of the single mode, but the dual use of gas and solar power is recommendable in view of controllability and enhanced COP.

A Numerical Study on Sectional Temperature Distribution and Heat Recovery Amount of Passive Ventilation Skin (패시브환기외피의 단면온도분포 및 열회수량에 관한 수치해석적 연구)

  • Lee, Tae-Cheol;Son, Yu-Nam;Yoon, Seong-Hwan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.10
    • /
    • pp.705-710
    • /
    • 2012
  • This study aims to analyse changes of inner temperature of PVS(Passive ventilation skin) and heat recovery when it has ventilation of air through PVS using numerical simulation in the winter condition. Results are as follows. 1) In case of the air inflows through PVS, change of inner temperature of PVS is lower than in case of the air flows inner space to out space, by dynamic insulation. 2) It was identified that the temperature gradient of PVS were bigger by increases of ventilation amount. To reduce ventilation load, heat transfer efficiency at the inner side of PVS is important and what performance of insulation at the inner side of PVS secure helps to improve heat performance of all PVS.

The Proposal of a Quantitative Evaluation Method on Mixing Loss in the HVAC System Design (공기조화설비(HVAC) 설계시 혼합손실의 정량적 평가방안의 제안)

  • 이정재
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.10
    • /
    • pp.879-885
    • /
    • 2000
  • It is a serious subject for energy conservation to prevent the energy loss caused by mixing of heated and cooled air jets in a building which two types of air-conditioning systems are adopted in perimeter and interior zone. The purpose of this paper is to clarify the quantitative and qualitative mechanisms of the mixing loss and to propose preventive methods for it. In this paper, by using the dynamic heat load calculation method, heat extraction loads of a typical office building in Pusan are calculated. According to the results, numerical simulation based on the computational fluid dynamics were peformed in order to measure the mixing loss in physical size HVAC system. Then, the distributions of air temperature and velocity are analyzed in order to grasp the relations by setting temperature differences influence on the mixing loss.

  • PDF

Effect of Processing Condition on the Hot Extrusion of Al-Zn-Mg-Sc Alloy (Al-Zn-Mg-Sc 합금의 고온압출에 미치는 공정조건의 영향 분석)

  • Kim, Nam-Yong;Kim, Jin-Ho;Yeom, Jong-Taek;Lee, Dong-Geun;Lim, Su-Gun;Park, Nho-Kwang;Kim, Jeoung-Han
    • Transactions of Materials Processing
    • /
    • v.15 no.2 s.83
    • /
    • pp.143-147
    • /
    • 2006
  • Effect of processing condition on the hot extrusion of Al-Zn-Mg-Sc alloy was investigated. For this purpose, hot compression test and FE-simulation were conducted via Thermecmaster-Z and DEFORM-3D, respectively. The microstructure evolution during hot extrusion and post heat-treatment was investigated and deformation mechanisms were analyzed by constructing processing map. FE-simulation results show that the temperature difference between container and billet has considerable influence on the final shape of extruded T-shape bar. The relation between applied load and processing time was predicted by the FE-analysis as well as punch speed vs. stroke chart.

Effect of processing condition on the hot extrusion of Al-Zn-Mg-Sc alloy (Al-Zn-Mg-Sc 합금의 고온압출에 미치는 공정조건의 영향 분석)

  • Yeom Jong Taek;Kim Nam Yong;Lim Su-Keun;Park Nho Kwang;Kim Jeoung Han
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.202-205
    • /
    • 2005
  • Effect of processing condition on the hot extrusion of Al-Zn-Mg-Sc alloy was investigated. For this purpose, hot compression test and FE-simulation were conducted via Thermecmasteer-Z and DEFORM-3D, respectively. The microstructure evolution during hot extrusion and post heat-treatment was investigated and deformation mechanisms were analyzed by constructing processing map. FE-simulation results show that the temperature difference between container and billet has considerable influence on the final shape of extruded T-shape bar. The relation between applied load and processing time was predicted by the FE-analysis as well as punch speed vs. stroke chart.

  • PDF

A Study on Performance of Seasonal Borehole Thermal Energy Storage System Using TRNSYS (TRNSYS를 이용한 Borehole 방식 태양열 계간축열 시스템의 성능에 관한 연구)

  • Park, Sang-Mi;Seo, Tae-Beom
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.5
    • /
    • pp.37-47
    • /
    • 2018
  • The heating performance of a solar thermal seasonal storage system applied to a glass greenhouse was analyzed numerically. For this study, the gardening 16th zucchini greenhouse of Jeollanam-do agricultural research & extension services was selected. And, the heating load of the glass greenhouse selected was 576 GJ. BTES (Borehole Thermal Energy Storage) was considered as a seasonal storage, which is relatively economical. The TRNSYS was used to predict and analyze the dynamic performance of the solar thermal system. Numerical simulation was performed by modeling the solar thermal seasonal storage system consisting of flat plate solar collector, BTES system, short-term storage tank, boiler, heat exchanger, pump, controller. As a result of the analysis, the energy of 928 GJ from the flat plate solar collector was stored into BTES system and 393 GJ of energy from BTES system was extracted during heating period, so that it was confirmed that the thermal efficiency of BTES system was 42% in 5th year. Also since the heat supplied from the auxiliary boiler was 87 GJ in 5th year, the total annual heating demand was confirmed to be mostly satisfied by the proposed system.

Optimal Cooling Operation of a Single Family House Model Equipped with Renewable Energy Facility by Linear Programming (신재생에너지 단독주택 모델 냉방운전의 선형계획법 기반 운전 최적화 연구)

  • Shin, Younggy;Kim, Eui-Jong;Lee, Kyoung-ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.12
    • /
    • pp.638-644
    • /
    • 2017
  • Optimal cooling operation algorithm was developed based on a simulation case of a single family house model equipped with renewable energy facility. EnergyPlus simulation results were used as virtual test data. The model contained three energy storage elements: thermal heat capacity of the living room, chilled water storage tank, and battery. Their charging and discharging schedules were optimized so that daily electricity bill became minimal. As an optimization tool, linear programming was considered because it was possible to obtain results in real time. For its adoption, EnergyPlus-based house model had to be linearly approximated. Results of this study revealed that dynamic cooling load of the living room could be approximated by a linear RC model. Scheduling based on the linear programming was then compared to that by a nonlinear optimization algorithm which was made using GenOpt developed by a national lab in USA. They showed quite similar performances. Therefore, linear programming can be a practical solution to optimal operation scheduling if linear dynamic models are tuned to simulate their real equivalents with reasonable accuracy.

Analysis of the Initial Cost Payback Period on the Open-loop Geothermal System Using Two Wells (복수정을 이용한 개방형 지열 시스템의 초기투자비 회수기간 분석)

  • Cho, Jeong-Heum;Nam, Yujin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.3
    • /
    • pp.119-126
    • /
    • 2017
  • Recently, ground source heat pump systems are being used in buildings for cooling and heating to reduce greenhouse gas and save energy. However, ground source heat pump systems mainly use the vertical closed-loop geothermal system design rather than the open-loop geothermal system design. This is due to a lack of knowledge and few research feasibility studies. In this research, a dynamic thermal analysis numerical simulation based on a standard house model was conducted for an open-loop geothermal system. Based on heating load analysis results, the life cycle costs of a standard house using an open two-well geothermal system were analyzed and compared with a vertical closed-loop geothermal system, and a diesel boiler. As a result, it was found that using an open two-well geothermal system shows economic return on investment after three years.

A System Simulation Model of Proton Exchange Membrane Fuel Cell for Residential Power Generation for Thermal Management Study (가정용 연료전지 시스템의 열관리 해석을 위한 시스템 운전 모델 개발)

  • Yu, Sang-Seok;Lee, Young-Duk;Ahn, Kook-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.1
    • /
    • pp.19-26
    • /
    • 2010
  • A PEMFC(proton exchange membrane fuel cell) is a good candidate for residential power generation to be coped with the shortage of fossil fuel and green house gas emission. The attractive benefit of the PEMFC is to produce electric power as well as hot water for home usage. The thermal management of PEMFC for RPG is to utilize the heat of PEMFC so that the PEMFC can be operated at its optimal efficiency. In this study, thermal management system of PEMFC stack is modeled to understand the dynamic response during load change. The thermal management system of PEMFC for RPGFC is composed of two cooling circuits, one for controling the fuel cell temperature and the other for heating up the water for home usage. The different operating strategy is applied for each cooling circuit considering the duty of those two circuits. Even though the capacity of PEMFC system (1kW) is enough to supply hot domestic water for residence, heat-up of reservior takes some hours. Therefore, in this study, time schedule of the simulation reflects the heat-up process. Dynamic responses and operating strategies of the PEMFC system are investigated during load changes.