• Title/Summary/Keyword: Dynamic geometry

Search Result 513, Processing Time 0.026 seconds

The Study of Propeller Design and Aerodynamics Characteristics for FAR25 Grade Turboprop Aircraft (FAR25급 터보프롭 항공기 프로펠러 설계 및 공력특성 연구)

  • Choi, Won;Jeong, In-Myon;Kim, Ji-Hong;Lee, Il-Woo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.648-651
    • /
    • 2010
  • Propeller shall have high efficiency and improved aerodynamic characteristics to get the thrust to fly at high speed for the FAR25 turboprop aircraft. That is way Clark-Y airfoil which is used to conventional turboprop aircraft propeller is selected as a blade airfoil. Javaprop program based on the Adkins method is used for aerodynamic design and analysis of propeller, Adkins method is based on the vortex-blade element theory which design the propeller to satisfy the condition for minimum energy loss. Slipstream displacement don't change and consider a rigid body. High efficiency propeller geometry is generated by varying chord length and pitch angle at design point of FAR25 turboprop aircraft. The propeller design results indicate that could be applied to the FAR25 turboprop aircraft, through analysis of propeller aerodynamic characteristics using the CFD(Computational Fluid Dynamic).

  • PDF

A Study on the Development of iGPS 3D Probe for RDS for the Precision Measurement of TCP (RDS(Robotic Drilling System)용 TCP 정밀계측을 위한 iGPS 3D Probe 개발에 관한 연구)

  • Kim, Tae-Hwa;Moon, Sung-Ho;Kang, Seong-Ho;Kwon, Soon-Jae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.6
    • /
    • pp.130-138
    • /
    • 2012
  • There are increasing demands from the industry for intelligent robot-calibration solutions, which can be tightly integrated to the manufacturing process. A proposed solution can simplify conventional robot-calibration and teaching methods without tedious procedures and lengthy training time. iGPS(Indoor GPS) system is a laser based real-time dynamic tracking/measurement system. The key element is acquiring and reporting three-dimensional(3D) information, which can be accomplished as an integrated system or as manual contact based measurements by a user. A 3D probe is introduced as the user holds the probe in his hand and moves the probe tip over the object. The X, Y, and Z coordinates of the probe tip are measured in real-time with high accuracy. In this paper, a new approach of robot-calibration and teaching system is introduced by implementing a 3D measurement system for measuring and tracking an object with motions in up to six degrees of freedom. The general concept and kinematics of the metrology system as well as the derivations of an error budget for the general device are described. Several experimental results of geometry and its related error identification for an easy compensation / teaching method on an industrial robot will also be included.

Prediction of Dynamics of Bellows in Exhaust System of Vehicle Using Equivalent Beam Modeling (등가 보 모델링 방법을 이용한 차량 배기계의 벨로우즈 동특성 예측)

  • Hong, Jin Ho;Kim, Yong Dae;Lee, Nam Young;Lee, Sang Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.11
    • /
    • pp.1105-1111
    • /
    • 2015
  • The exhaust system is one of the major sources of vibrations, along with the suspension system and engine. When the exhaust system is connected directly to the engine, it transfers vibrations to the vehicle body through the body mounts. Therefore, in order to reduce the vibrations transmitted from the exhaust system, the vibration characteristics of the exhaust system should be predicted. Thus, the dynamic characteristics of the bellows, which form a key component of the exhaust system, must be modeled accurately. However, it is difficult to model the bellows because of the complicated geometry. Though the equivalent beam modeling technique has been applied in the design stage, it is not sufficiently accurate in the case of the bellows which have complicated geometries. In this paper, we present an improved technique for modeling the bellows in a vehicle. The accuracy of the modeling method is verified by comparison with the experimental results.

Mixer design for improving the injection uniformity of the reduction agent in SCR system

  • Hwang, Woohyeon;Lee, Kyungok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.1
    • /
    • pp.63-69
    • /
    • 2017
  • In this paper, we propose a method to optimize the geometry and installation position of the mixer in the selective catalytic reduction (SCR) system by computational fluid dynamic(CFD). Using the commercial CFD software of CFD-ACE+, the flow dynamics of the flue gas was numerically analyzed for improving the injection uniformity of the reduction agent. Numerical analysis of the mixed gas heat flow into the upstream side of the primary SCR catalyst layer was performed when the denitrification facility was operated. The characteristics such as the flow rate, temperature, pressure loss and ammonia concentration of the mixed gas consisting of the flue gas and the ammonia reducing gas were examined at the upstream of the catalyst layer of SCR. The temperature difference on the surface of the catalyst layer is very small compared to the flow rate of the exhaust gas, and the temperature difference caused by the reducing gas hardly occurs because the flow rate of the reducing gas is very small. When the mixed gas is introduced into the SCR reactor, there is a slight tendency toward one wall. When the gas passes through the catalyst layer having a large pressure loss, the flow angle of the exhaust gas changes because the direction of the exhaust gas changes toward a smaller flow. Based on the uniformity of the flow rate of the mixed gas calculated at the SCR, it is judged that the position of the test port reflected in the design is proper.

Investigation of the Maintenance Criteria for the Rail Surface Defects in High-Speed Railways (고속철도 레일 표면 결함 관리기준에 관한 연구)

  • Yang, Sin-Chu;Jang, Seung-Yup
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.6
    • /
    • pp.535-544
    • /
    • 2011
  • The rail surface defects can cause the high impact load on the track and lead to the progress of the rail fatigue damage and the rail break. In case of the rail break, there is a great deal of risk for derailment, and thus the maintenance criteria for the rail surface defects are of great importance. In this study, using the dynamic train-track interaction analysis program, the impact wheel loads and rail bending stresses according to the depths of the surface defects have been calculated with the input data of the rail surface irregularities measured at 43 spots with surface defects in the ballasted track of high-speed railway. Considering the irregularity of track geometry, the allowable limits of wheel load and rail bending stress have been set, and the maintenance criteria for the rail surface defects was suggested by analyzing the relationship of the maximum values of wheel load and rail bending stress versus depth and width of rail surface defect. The analysis results suggest that the allowable depth of the surface defect is determined approximately 0.2mm from the limit of the impact wheel load.

A Pulser System with Parallel Spark Gaps at High Repetition Rate

  • Lee, Byung-Joon;Nam, Jong-Woo;Rahaman, Hasibur;Nam, Sang-Hoon;Ahn, Jae-Woon;Jo, Seung-Whan;Kwon, Hae-Ok
    • Journal of IKEEE
    • /
    • v.15 no.4
    • /
    • pp.305-312
    • /
    • 2011
  • A primary interest of this work is to develop an efficient and powerful repetitive pulser system for the application of ultra wide band generation. The important component of the pulser system is a small-sized coaxial type spark gap with planar electrodes filled with SF6 gas. A repetitive switching action by the coaxial spark gap generates two consecutive pulses in less than a microsecond with rise times of a few hundred picoseconds (ps). A set of several parameters for the repetitive switching of the spark gap is required to be optimized in charging and discharging systems of the pulser. The parameters in the charging system include a circuit scheme, circuit elements, the applied voltage and current ratings from power supplies. The parameters in the discharging system include the spark gap geometry, electrode gap distance, gas type, gas pressure and the load. The characteristics of the spark gap discharge, such as breakdown voltage, output current pulse and recovery rate are too dynamic to control by switching continuously at a high pulse repetition rate (PRR). This leads to a low charging efficiency of the spark gap system. The breakthrough of the low charging efficiency is achieved by a parallel operation of two spark gaps system. The operational behavior of the two spark gaps system is presented in this paper. The work has focused on improvement of the charging efficiency by scaling the PRR of each spark gap in the two spark gaps system.

Analysis on the Flow Field Around a Hydrofoil with Surface Blowing (표면 유체분출 수중날개의 유동해석)

  • Sang-Woo Pyo;Jung-Chun Suh;Hyo-Chul Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.4
    • /
    • pp.21-27
    • /
    • 1999
  • A low order panel method based on the perturbation potential is applied for prediction of performance of blown-flap rudders. In order to improve the solution behavior at the large angle of attacks, the geometry of the trailing wake sheet is computed by aligning freely with the local flow. The effect of the wake sheet roll-up is also included with use of a high order panel method. The flow in the gap between the main component and the flap of the rudder is modeled as Couette flow. The effects of the gap and the flow jet are included in application of a kinematic and a dynamic boundary condition on the inlet and the outlet of the gap as well as on the flap and the wake. The results with the present method are compared with existing experimental data. The method is shown to be capable of determining accurately the flow characteristics even for large flap angles.

  • PDF

Mathematical Cognition as the Construction of Concepts in Kant's Critique of Pure Reason ("순수이성비판"에 나타난 수학적 인식의 특성: 개념의 구성)

  • Yim, Jae-Hoon
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.16 no.1
    • /
    • pp.1-19
    • /
    • 2012
  • Kant defines mathematical cognition as the cognition by reason from the construction of concepts. In this paper, I inquire the meaning and the characteristics of the construction of concepts based on Kant's theory on the sensibility and the understanding. To construct a concept is to exhibit or represent the object which corresponds to the concept in pure intuition apriori. The construction of a mathematical concept includes a dynamic synthesis of the pure imagination to produce a schema of a concept rather than its image. Kant's transcendental explanation on the sensibility and the understanding can be regarded as an epistemological theory that supports the necessity of arithmetic and geometry as common core in human education. And his views on mathematical cognition implies that we should pay more attention to how to have students get deeper understanding of a mathematical concept through the construction of it beyond mere abstraction from sensible experience and how to guide students to cultivate the habit of mind to refer to given figures or symbols as schemata of mathematical concepts rather than mere images of them.

  • PDF

Haptic Media Broadcasting (촉각방송)

  • Cha, Jong-Eun;Kim, Yeong-Mi;Seo, Yong-Won;Ryu, Je-Ha
    • Broadcasting and Media Magazine
    • /
    • v.11 no.4
    • /
    • pp.118-131
    • /
    • 2006
  • With rapid development in ultra fast communication and digital multimedia, the realistic broadcasting technology, that can stimulate five human senses beyond the conventional audio-visual service is emerging as a new generation broadcasting technology. In this paper, we introduce a haptic broadcasting system and related core system and component techniques by which we can 'touch and feel' objects in an audio-visual scene. The system is composed of haptic media acquisition and creation, contents authoring, in the haptic broadcasting, the haptic media can be 3-D geometry, dynamic properties, haptic surface properties, movement, tactile information to enable active touch and manipulation and passive movement following and tactile effects. In the proposed system, active haptic exploration and manipulation of a 3-D mesh, active haptic exploration of depth video, passive kinesthetic interaction, and passive tactile interaction can be provided as potential haptic interaction scenarios and a home shopping, a movie with tactile effects, and conducting education scenarios are produced to show the feasibility of the proposed system.

A Study on the Geometrical Space Composition, Dynamic Visual Perception and Questions of Existence found in the Works of James Turrell - Focusing on 'Wedgework', 'Space Division', 'Skyspace' Projects - (제임스 터렐의 작품에 나타난 기하학적 공간구성, 시지각적 역동성 그리고 존재론적 의미에 관한 연구 - '웨지워크', '스페이스 디비전', '스카이스페이스' 프로젝트를 중심으로 -)

  • Kim, Jong-Jin
    • Korean Institute of Interior Design Journal
    • /
    • v.21 no.5
    • /
    • pp.145-152
    • /
    • 2012
  • Since 1966 when James Turrell completed his studies on Art, he has been working on the consistent theme of Art. For the 46 years of time, site contexts, scales, methods of light have been changed and they made Turrell's unique 'project series'. Each series has different spatial, visual-perceptual forms and characteristics from other series. The differences were caused by the given situations, but also Turrell intentionally pursued it. However, there are essential theme of art that has not changed in most of Turrell's projects. Target of this paper is to study the unchanged theme as well as the differences. The study starts with three questions: first, what is the geometrical space composition?, second, what is the visual-perceptual phenomenon?, third, what is the hidden consistent theme? This research focuses on three case projects: Wedgework, Space Division Constructions, Skyspaces. These project series are in between the early small object-like installations and the late mega-scale outdoor projects. The study found that geometrical space composition has important role to give visual-perceptual dynamism to the viewer. The phenomenological perception is connected to the questions of relationship between human and space, ultimately human and the world. Although the Merleau-Ponty's philosophy has been related to the work of Turrell in various previous studies, Cartesian 3-dimensional geometry has also crucial role to experiment a viewer's perceptual boundaries. Image of infinity is another aspect of three cases, especially Space Division Constructions and Skyspaces. Through these structure, Turrell's work lead to an ultimate question of meaning for human existence in infinite space. It is hoped that this paper is helpful for Architecture and Interior design field in which light and space are essential.

  • PDF