• Title/Summary/Keyword: Dynamic gain control

Search Result 321, Processing Time 0.033 seconds

Performance Improvement of a Grid-Connected Inverter System using a Sliding-Mode Based Direct Power Control with a Variable Gain (슬라이딩 모드 기반의 가변이득을 가지는 직접전력제어를 이용한 계통연계형 인버터의 성능개선)

  • Lee, Byoung-Seoup;Lee, June-Seok;Lee, Kyo-Beum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.57-66
    • /
    • 2012
  • This paper proposes a performance improvement of grid-connected inverter system using sliding-mode based direct power control with a variable gain. The proposed control method determine variable gain of PI controller by using modeling at direct power control (DPC) applied to space vector modulation method. Also, this method use sliding-mode control to maintain excellent dynamic response of character of direct power control (DPC). The validity of the proposed algorithm are verified by simulations and experiments.

DISCRETE TIME DYNAMIC MODEL FOR TELESCOPE AUTO-GUIDING SYSTEM (망원경의 자동추적장치를 위한 이산시간 동적모델 분석)

  • Lee, Joon-Hwa
    • Journal of Astronomy and Space Sciences
    • /
    • v.24 no.4
    • /
    • pp.431-450
    • /
    • 2007
  • In the auto-guiding system for obtaining a long exposure astrophotography, CCD camera is usually used for measuring guide errors which are affected by optical dispersion and mechanical disturbances. In this paper, a discrete time dynamic model and a performance index are proposed for analysing the auto-guiding system. The optimal gain for proportional control is derived considering the optical dispersion and the disturbances. Some experiments are provided to illustrate that the optimal control gain is lower as the optical dispersion is higher.

Dynamic Robust Path-Following Using A Temporary Path Generator for Mobile Robots with Nonholonomic Constraints

  • Lee, Seunghee;Jongguk Yim;Park, Jong-Hyeon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.515-515
    • /
    • 2000
  • The performance of dynamic path following of a wheeled mobile robot with nonholonomic constraints has some drawbacks such as the influence of the initial state. The drawbacks can be overcome by the temporary path generator and modified output. But with the previous input-output linearization method using them, it is difficult to tune the gains, and if there are some modeling errors, the low gain can make the system unstable. And if a high gain is used to overcome the model uncertainties, the control inputs are apt to be large so the system can be unstable. In this paper. an H$_{\infty}$ controller is designed to guarantee robustness to model parameter uncertainties and to consider the magnitude of control inputs. And the solution to Hamilton Jacobi (HJ) inequality, which is essential to H$_{\infty}$ control design, is obtained by nonlinear matrix inequality (NLMI).

  • PDF

Analysis of PI air-fuel ratio feedback control system (비례적분 방식의 피드백 공연비 콘트롤 시스템 해석)

  • 이대영;박경석;노승탁;김응서;고상근
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.5
    • /
    • pp.73-80
    • /
    • 1991
  • Air/fuel ratio control system for gasoline engines has been analyzed to determine the control gain of the system. In this analysis the engine is modelled to be a simple time delaying element and the ramp-and-jump method is used to control air/fuel ratio. The result shows that it is necessary to measure the air flow rate accurately to enhance the control performance. And also it is shown that the control gain must be determined in some bounded region to meet the fast dynamic response and high catalyst conversion efficiency together.

  • PDF

Dynamic Modeling and Analysis of Control Systems for Skin Pass Mill (조질 압연기의 동적 모델링과 제어시스템 분석)

  • 이규택;이원호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.316-316
    • /
    • 2000
  • SPM dynamic model was developed by using Bland & Ford formulas considered elastic zone in roll gap, gauge meter equation, tension equation, speed equation and actuator models. And SPM controllers of the field were done model ing. It was shown the efficiency of constant tension, rol1ing force and elongation controllers by the simulation program and it was recommended the proper gain to the controllers of the field.

  • PDF

PID Learning Controller for Multivariable System with Dynamic Friction (동적 마찰이 있는 다변수 시스템에서의 PID 학습 제어)

  • Chung, Byeong-Mook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.12
    • /
    • pp.57-64
    • /
    • 2007
  • There have been many researches for optimal controllers in multivariable systems, and they generally use accurate linear models of the plant dynamics. Real systems, however, contain nonlinearities and high-order dynamics that may be difficult to model using conventional techniques. Therefore, it is necessary a PID gain tuning method without explicit modeling for the multivariable plant dynamics. The PID tuning method utilizes the sign of Jacobian and gradient descent techniques to iteratively reduce the error-related objective function. This paper, especially, focuses on the role of I-controller when there is a steady state error. However, it is not easy to tune I-gain unlike P- and D-gain because I-controller is mainly operated in the steady state. Simulations for an overhead crane system with dynamic friction show that the proposed PID-LC algorithm improves controller performance, even in the steady state error.

Adaptive-Tuning of PID Controller using Self-Recurrent Neural Network (자기순환 신경망을 이용한 PID 제어기의 적응동조)

  • 박광현;허진영;하홍곤
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2001.06a
    • /
    • pp.121-124
    • /
    • 2001
  • In industrial actual control system, PID controller has been used with its high delicate control system in position control system. PID controller has simple structure and superior ability in several characteristics. When the response of system is changed by delay time, variable load , disturbances and external environment, control gain of PID controller must be readjusted on the system dynamic characteristics. Therefore, a control ability of PID controller is degraded when th control gain is inappropriately determined. When the response characteristic of system is changed under a condition, control gain of PID controller must be changed adaptively to be a waited response of system. In this paper an adaptive-tuning type PID controller is constructed by self-recurrent Neural Network(SRNN). applying back-propagation(BP) algorithm. Form the result of computer simulation in the proposed controller, its usefulness is verified.

  • PDF

Ultrasound Image Enhancement Based on Automatic Time Gain Compensation and Dynamic Range Control

  • Lee, Duh-Goon;Kim, Yong-Sun;Ra, Jong-Beom
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.2
    • /
    • pp.294-299
    • /
    • 2007
  • For efficient and accurate diagnosis of ultrasound images, appropriate time gain compensation(TGC) and dynamic range(DR) control of ultrasound echo signals are important. TGC is used for compensating the attenuation of ultrasound echo signals along the depth, and DR controls the image contrast. In recent ultrasound systems, these two factors are automatically set by a system and/or manually adjusted by an operator to obtain the desired image quality on the screen. In this paper, we propose an algorithm to find the optimized parameter values far TGC and DR automatically. In TGC optimization, we determine the degree of attenuation compensation along the depth by dividing an image into vertical strips and reliably estimating the attenuation characteristic of ultrasound signals. For DR optimization, we define a novel cost function by properly using the characteristics of ultrasound images. We obtain experimental results by applying the proposed algorithm to a real ultrasound(US) imaging system. The results verify that the proposed algorithm automatically sets values of TGC and DR in real-time such that the subjective quality of the enhanced ultrasound images may be sufficiently high for efficient and accurate diagnosis.

Modeling and Dynamic Analysis of Electromechanical System in Machine Tools (1$^{st}$ Report) - Gain Tuning of PI Speed Controller - (공장기계 시스템의 모델링과 동적특성 분석 (제1보) - PI 속도 제어기의 제어이득 설정 -)

  • Park, Yong-Hwan;Moon, Hee-Sung;Choe, Song-Yul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.1 s.94
    • /
    • pp.265-271
    • /
    • 1999
  • In the feed drive systems or the spindle systems of machine tools that consist of many mechanical components, a torsional vibration is often generated because of its elastic elements in torque transmission-Generally, the accuracy of motion control system is strongly influenced by the dynamic behavior of coupled transmission components Especially, a torsional vibration caused by the elasticity of mechanical elements might deteriorate the quick movement of system and lead to shorten the life time of the mechanical transmission elements. So, it is necessary to analyze the electromechanical system mathematically to optimize the dynamic characteristics of the feed m1d spindle system. In this paper, based on the DC motor model, a model of electro-drive system with motor has been developed and an optimal criterion for tuning the gain of speed controller is discussed. The frequency bandwidth of the system and the damping ratio in time domain are optimal design specifications for the gain adjustment speed controller. The gains of PI speed controller are then derived from the bandwidth and damping ratio, and those relationships have been classified.

  • PDF