• Title/Summary/Keyword: Dynamic fatigue test

Search Result 220, Processing Time 0.024 seconds

A Study on The Test Results of Dynamic Stress of Rubber Tired AGT (고무차륜형식 경량전철 차량 동응력 측정 결과 분석 및 결과 고찰)

  • Kwon, Tae;Kim, Young-Sik;Nam, Yang-Hee;Park, Hee-Chul
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2615-2625
    • /
    • 2011
  • Recently in worldwide and Korea domestically, the LRT vehicles are introduced as reputable urban transit system, in a view of energy saving, punctuality and eco-friendly as well as transport efficiency. At first time in Korea, the Busan metro Line 4 was applied with AGT system which is a kind of LRT using the Rubber tired AGT vehicle and developed from 1999 to 2004 in charge of Korean government. Busan selected the AGT system for Metro Line 4 as the solution of traffic jam and networking the intercity. At present, Busan Metro Line 4 has been running since opened at March 30, 2011. The vehicle of Busan metro line 4 is aiming the maximization of LRT vehicle advantage that is the lightness of vehicle size and vehicle weight. So, it did size downed and weight downed by lightened the weight of car frame and bogies and by the compactness of electrical on-board equipments. The study carried out the structure analysis to verify and safety and performance of car body and bogie frame of Busan Metro Line 4 vehicles. In this study, it was analyzed the stress of main load and verified the fatigue strength. And measured the dynamic stress sending to body structure and bogie frame while running on main line and analyzed the fatigue stress. As a result, it verified the safety and life cycle of car body and bogie frame.

  • PDF

Fatigue Assessment of Steel Railway Bridge by Service Loading about 65 Years

  • Hong, Sung-Wook;Chai, Won-Kyu;Lee, Myeong-Gu
    • International Journal of Safety
    • /
    • v.9 no.1
    • /
    • pp.12-20
    • /
    • 2010
  • In this study, a series of random field test and dynamic analysis in the time domain were carried out in order to find in the reason of fatigue damage of the main and the secondary members in the 3-span continuous steel plate girder railway bridge being under in service over 60 years. From the measured and the analyzed results, the stress distribution patterns were investigated for the members with fatigue damage. In addition, global and local numerical stress analysis was performed for the members damaged severely by corrosion, to estimate variation of the distribution by corrosion. Finally, a reasonable cut-off ratio in the steel plate railway bridge will be proposed by analyzing the equivalent stress ranges according the ratio.

Fatigue Characteristics of High Strength Fire Resistance Steel for Frame Structure and Time-Frequency Analysis its Acoustic Emission Signal (고강도 구조용 내화강의 피로특성 및 음향방출신호의 시간-주파수 해석)

  • Kim, Hyun-Soo;Nam, Ki-Woo;Kang, Chang-Young
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.67-72
    • /
    • 2000
  • Demand for now nondestructive evaluation are growing to detect fatigue crack growth behavior to predict long term performance of materials and structure in aggressive environments especially when they are In non-visible area. Acoustic emission technique is well suited to these problems and has drawn a keen interests because of its dynamic detection ability, extreme sensitivity and location of growing defects. In this study, we analysed acoustic emission signals obtained in fatigue and tensile test of high strength fire resistance steel for frame structure with time-frequency analysis methods. The main frequency range is different in the noise and the fatigue crack propagation. It could be classified that it were also generated by composite fracture mechanics of cleavage, dimple, inclusion separation etc.

  • PDF

The review and application of UIC 518 standard regarding railway vehicle dynamic performances (철도차량 동적 주행성능 시험 및 인증관련 국제규격 (UIC 518) 고찰 및 적용)

  • Lee Kang-Wun;Park Kil-Bae;Yang Hee-Joo
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.125-130
    • /
    • 2005
  • The railway shall be verified with the view point of dynamic performances before delivering to the Customer and the verification procedure shall be followed the Customer's demands or relevant international standard, UIC 518 (Testing and approval of railway vehicles from the point of view of their dynamic behavior-Safety-Track fatigue-Ride quality). In this paper, verification procedures in UIC 518 and the test results for domestic project are summarized.

  • PDF

Experimental Verification of Compressor Blade Aeromechanics (압축기 블레이드 Aeromechanics의 시험적 검증)

  • Choi, Yun Hyuk;Park, Hee Yong;Kim, Jee Soo;Shin, Dong Ick;Choi, Jae Ho;Kim, Yeong Ryeon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.240-244
    • /
    • 2017
  • Experimental verification in the rig test stage for component development is a vital link between the aeromechanical design and structural integrity validation process. Based on this premise, Non-Intrusive Stress Measuring System was adopted on the axial compressor test rig to measure the static and dynamic tip deflection of all blades by using tip-timing sensors. Through analyzing vibration characteristics, we evaluated the vibratory stresses seen on the blades fatigue critical location; detected synchronous resonances which are the source of High Cycle Fatigue (HCF) in blades; presented non-synchronous vibration response by aerodynamic excitation and individual blade mis-tuning patterns.

  • PDF

A Study on Fatigue Life Design for Horizontal Axis Wind Turbine Composite Blade (수평축 풍력발전 시스템용 복합재 회전날개의 피로수명 설계에 관한 연구)

  • 공창덕;방조혁;정종철;강명훈;정석훈;류지윤;김기범
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.3
    • /
    • pp.47-52
    • /
    • 1999
  • Fatigue test is an essential procedure in the dynamic structure design. It is performed to confirm that the structure should safety the required life. In this study, fatigue life for 750㎾ class horizontal axis wind turbine composite blade was investigated. Required fatigue stress was calculated by fan Bond's empirical equation and S-N linear damage method. Fatigue load for FEM analysis was calculated using load spectrum through experiments and Spera's method. Service fatigue stress was obtained by FEM with the calculated fatigue load. From comparison of the fatigue stresses, fatigue life over 20 years was confirmed.

  • PDF

DETERMINATION OF FRACTURE TOUGHNESS BY UNIAXIAL TENSILE TEST

  • Oh, Hung-Kuk
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 1994.05a
    • /
    • pp.2-7
    • /
    • 1994
  • The dynamic fatigue life equation is applied to uniaxial tensile test. The resultant equations far the surface energy and fracture toughness are calculated with the data from the tensile test and compared with the ones from ASTM E399 test. During the crack propagation under model loading, the material of the crack tip undergoes the process of the elastic-plastic deformation in the uniaxial tensile test. The surface energy per unit area is proportional to the ratio of plastic and elastic elongations. The calculated fracture toughness of the metals are very well coincident to the ASTM E399's test results.

  • PDF

A Study of Dynamis Force Estimation and Strength Design of KALES (포장가속시험시설의 동역학 힘 예측 및 강도설계에 관한 연구)

  • Kim, Nak-In;Yang, Sung-Chul;Park, Yong-Geol
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.2
    • /
    • pp.211-221
    • /
    • 2001
  • The dynamic force estimation and strength design of KALES(Korea Accelerated Loading and Environmental Simulator) are studied. The KALES is continuously rotating the test track and subjected to the dynamic or impact forces during operation since the track is composed of straight and curved line. To estimate the dynamic equation for the model car which was already made is derived with analytical and experimental techniques. Using similarity relationships between the model car and KALES, the dynamic force and stability properties for KALES can be predicted. The stress analysis and fatigue life estimation of KALES is also estimated with the calculated dynamic load. From the stress analysis and fatigue life estimation results, it was found that the design of KALES is safe.

  • PDF

Inverse Kinematic Analysis for a three-axis Hydraulic Fatigue Simulator Coupling (3축 유압 피로 시뮬레이터의 커플링에 대한 역기구학적 해석)

  • Kim, Jinwan
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.1
    • /
    • pp.16-20
    • /
    • 2020
  • The fatigue happening during the road riding of the vehicle and for the moment the aircraft lands on the runway is closely related to the life cycle of the landing gear, the airframe, the vehicle's suspension, etc. The multiple loads acting on the wheel are longitudinal, lateral, vertical, and braking forces. To study the dynamic characteristics and fatigue stiffness of the vehicle, the dynamic fatigue simulator generally has been used to represent the real road vibration in the lab. It can save time and cost. In hardware, the critical factor in the hydraulic fatigue simulator structure is to decouple each axis and to endure several load vibration. In this paper, the inverse kinematic analysis method derives the magnitude of movement of the hydraulic servo actuator by the coupling after rendering the maximum movement displacement in the axial direction at the center of the dummy wheel. The result of the analysis is that the coupling between the axes is weak to reproduce the real road vibrations precisely.

Microstructure and High-Cycle Fatigue Properties of High-Speed-Extruded Mg-5Bi-3Al Alloy (Mg-5Bi-3Al 마그네슘 고속 압출재의 미세조직과 고주기피로 특성)

  • Cha, J.W.;Jin, S.C.;Park, S.H.
    • Transactions of Materials Processing
    • /
    • v.31 no.5
    • /
    • pp.253-260
    • /
    • 2022
  • In this study, the microstructural characteristics of a high-speed-extruded Mg-5Bi-3Al (BA53) alloy and its tensile, compressive, and high-cycle fatigue properties are investigated. The BA53 alloy is successfully extruded at a die-exit speed of 16.6 m/min without any hot cracking using a large-scale extruder for mass production. The homogenized BA53 billet has a large grain size of ~900 ㎛ and it contains fine and coarse Mg3Bi2 particles. The extruded BA53 alloy has a fully recrystallized microstructure with an average grain size of 33.8 ㎛ owing to the occurrence of complete dynamic recrystallization during high-speed extrusion. In addition, the extruded BA53 alloy contains numerous fine lath-type Mg3Bi2 particles, which are formed through static precipitation during air cooling after exiting the extrusion die. The extruded BA53 alloy has a high tensile yield strength of 175.1 MPa and ultimate tensile strength of 244.4 MPa, which are mainly attributed to the relative fine grain size and numerous fine particles. The compressive yield strength (93.4 MPa) of the extruded BA53 alloy is lower than its tensile yield strength, resulting in a tension-compression yield asymmetry of 0.53. High-cycle fatigue test results reveal that the extruded BA53 alloy has a fatigue strength of 110 MPa and fatigue cracks initiate at the surface of fatigue test specimens, indicating that the Mg3Bi2 particles do not act as fatigue crack initiation sites. Furthermore, the extruded BA53 alloy exhibits a higher fatigue ratio of 0.45 than other commercial extruded Mg-Al-Zn-based alloys.