• 제목/요약/키워드: Dynamic energy

검색결과 3,572건 처리시간 0.028초

Dynamic response of free-end rod with consideration of wave frequency

  • Kim, Sang Yeob;Lee, Jong-Sub;Tutumluer, Erol;Byun, Yong-Hoon
    • Geomechanics and Engineering
    • /
    • 제28권1호
    • /
    • pp.25-33
    • /
    • 2022
  • The energy transferred on drill rods by dynamic impact mainly determines the penetration depth for in-situ tests. In this study, the dynamic response and transferred energy of drill rods are determined from the frequency of the stress waves. AW-type drill rods of lengths 1 to 3 m are prepared, and strain gauges and an accelerometer are installed at the head and tip of the connected rods. The drill rods are hung on strings, allowing free vibration, and then impacted by a pendulum hammer with fixed potential energy. Increasing the rod length L increases the wave roundtrip time (2L/c, where c is the wave velocity), and hence the transferred energy at the rod head. At the rod tip, the first velocity peak is higher than the first force peak because a large and tensile stress wave is reflected, and the transferred energy converges to zero. The resonant frequency increases with rod length in the waveforms measured by the strain gauges, and fluctuates in the waveforms measured by the accelerometer. In addition, the dynamic response and transferred energy are perturbed when the cutoff frequency is lower than 2 kHz. This study implies that the resonant frequency should be considered for the interpretation of transferred energy on drill rods.

실물실험을 통한 다이나믹 유량밸런싱 적용 공동주택 세대의 에너지소비량 평가 (Evaluation of Energy Consumption through Field Measurement at the Apartment Housing Unit Using Dynamic Flow Rate Balancing)

  • 류성룡;정창헌;조현
    • 한국지열·수열에너지학회논문집
    • /
    • 제12권4호
    • /
    • pp.15-20
    • /
    • 2016
  • Even though the control device of the heating system works well, insufficient water flow rates can degrade control performance and thermal comfort. The water flow rate should be adjusted appropriately to cope with the heating load of each zone. In order to solve these problems, a new balancing concept 'dynamic balancing' was proposed where a balancing valve opening can be automatically modulated according to the heating condition of the room. This study analyzed the effects of dynamic balancing upon indoor thermal environment and energy consumption in a radiant floor heating system through field measurement. Under part-load conditions, the use of a dynamic balancing is a more effective method to reduce energy consumption and to prevent a cavitation. Dynamic balancing is able to help boost the temperature of a room in the start-up period.

Experimental study on the dynamic behavior of pervious concrete for permeable pavement

  • Bu, Jingwu;Chen, Xudong;Liu, Saisai;Li, Shengtao;Shen, Nan
    • Computers and Concrete
    • /
    • 제22권3호
    • /
    • pp.291-303
    • /
    • 2018
  • As the concept of "sponge city" is proposed, the pervious concrete for permeable pavement has been widely used in pavement construction. This paper aims at investigating the dynamic behavior and energy evolution of pervious concrete under impact loading. The dynamic compression and split tests are performed on pervious concrete by using split Hopkinson pressure bar equipment. The failure criterion on the basis of incubation time concept is used to analyze the dynamic failure. It is demonstrated that the pervious concrete is of a strain rate sensitive material. Under high strain rate loading, the dynamic strength increases while the time to failure approximately decreases linearly as the strain rate increases. The predicted dynamic compressive and split tensile strengths based on the failure criterion are in accordance with the experimental results. The total damage energy is found to increase with the increasing of strain rate, which means that more energy is needed to produce irreversible damage as loading rate increases. The fractal dimensions are observed increases with the increasing of impact loading rate.

Transient energy flow in ship plate and shell structures under low velocity impact

  • Liu, Z.S.;Swaddiwudhipong, S.;Lu, C.;Hua, J.
    • Structural Engineering and Mechanics
    • /
    • 제20권4호
    • /
    • pp.451-463
    • /
    • 2005
  • Structural members commonly employed in marine and off-shore structures are usually fabricated from plates and shells. Collision of this class of structures is usually modeled as plate and shell structures subjected to dynamic impact loading. The understanding of the dynamic response and energy transmission of the structures subjected to low velocity impact is useful for the efficient design of this type of structures. The transmissions of transient energy flow and dynamic transient response of these structures under low velocity impact are presented in the paper. The structural intensity approach is adopted to study the elastic transient dynamic characteristics of the plate structures under low velocity impact. The nine-node degenerated shell elements are adopted to model both the target and impactor in the dynamic impact response analysis. The structural intensity streamline representation is introduced to interpret energy flow paths for transient dynamic response of the structures. Numerical results, including contact force and transient energy flow vectors as well as structural intensity stream lines, demonstrate the efficiency of the present approach and attenuating impact effects on this type of structures.

MANET의 에너지 분산 소모를 위한 패킷 분산 라우팅 (A Packet Distribution Routing for Balancing Energy-Consumption in MANET)

  • 김동학;최용준;박희주;김종근
    • 정보처리학회논문지C
    • /
    • 제15C권2호
    • /
    • pp.79-86
    • /
    • 2008
  • MANET(Mobile Ad hoc Network)은 두 대 이상의 이동 무선 단말로 구성되는 네트워크로 단말의 한정된 에너지 때문에 많은 제한성을 가지게 된다. MANET에서 특정 노드들의 조기 에너지 소진은 네트워크 성능에 큰 영향을 줄 수 있다. 본 논문에서는 이에 대한 해결책으로 송, 수신지 사이에 가능한 많은 노드 비중첩 다중 경로를 구축하고, 각 경로상 노드가 가진 평균 에너지, 최소 에너지, 혹은 에너지 분산 값에 따라 다중 경로를 통해 패킷을 분산 전송한다. 에너지 정보 수집 방법을 크게 Static 방식과 Dynamic 방식으로 나누며, 수집하는 에너지 정보에 따라 Static-Average, Static-Minimum, Static-Variance, 그리고, Dynamic-Average, Dynamic-Minimum, Dynamic-Variance 등 6가지 방식으로 나누고, NS2 시뮬레이션을 통해 그 성능을 비교하고 평가한다.

멀티프로세서 시스템을 위한 동적 전압 조절 기반의 효율적인 스케줄링 기법 (An Efficient Scheduling Method based on Dynamic Voltage Scaling for Multiprocessor System)

  • 노경우;박창우;김석윤
    • 전기학회논문지
    • /
    • 제57권3호
    • /
    • pp.421-428
    • /
    • 2008
  • The DVS(Dynamic Voltage Scaling) technique is the method to reduce the dynamic energy consumption. As using slack times, it extends the execution time of the big load operations by changing the frequency and the voltage of variable voltage processors. Researches, that controlling the energy consumption of the processors and the data transmission among processors by controlling the bandwidth to reduce the energy consumption of the entire system, have been going on. Since operations in multiprocessor systems have the data dependency between processors, however, the DVS techniques devised for single processors are not suitable to improve the energy efficiency of multiprocessor systems. We propose the new scheduling algorithm based on DVS for increasing energy efficiency of multiprocessor systems. The proposed DVS algorithm can improve the energy efficiency of the entire system because it controls frequency and voltages having the data dependency among processors.

리커다인을 이용한 파력발전기 동적거동 연구 (Study on the Dynamic Behaviors of Wave Energy Converter by using RecurDyn)

  • 손정현;전철웅;김민수
    • 동력기계공학회지
    • /
    • 제21권2호
    • /
    • pp.35-40
    • /
    • 2017
  • In this study, the multi-body dynamics model for a wave energy converter is established. The equations of motions for the mechanical parts of the wave energy converter are derived to analyze the dynamic behavior. A spring method with the same performance as the counter weight method is proposed. The counter weight method and spring method are analyzed for evaluating the performance of the wave energy converter. RecurDyn program which is a kind of commercial multi-body dynamics program is used to perform the dynamic simulation of the wave energy converter.

표준관입 시험 해머의 에너지비와 동적효율 (Ratio of Hammer Energy and Dynamic Efficiency of Standard Penetration Test)

  • 이창호;이우진
    • 한국지반공학회논문집
    • /
    • 제21권9호
    • /
    • pp.5-12
    • /
    • 2005
  • 해머에 의해 발생한 에너지와 그의 전달은 표준관입시험의 N치에 영향을 주며 이러한 SPT해머에너지는 이론적 에너지, 속도 에너지, 롯드 에너지, 그리고 동적효율 등으로 나누어진다. 본 연구에서는 항타 분석기(Pile Driving Analyzer, PDA)와 디지털 라인-스캔카메라(Digital Line-Scan Camera)를 이용하여 국내에서 널리 사용 중인 시험 장비들에 대해 롯드 에너지와 속도에너지를 직접 측정하여 각 시험 장비의 동적효율(Dynamic efficiency)을 계산하였다. 시험 결과 FV 방법에 의해 산정된 각 장비의 평균 롯드 에너지 전달율은 도넛해머, 안전해머, 자동해머의 경우 각각 49.57, 61.60, $87.04\%$로 측정되었다. 해머의 타격직전의 박하 속도는 도넛해머, 안전해머, 자동해머의 경우 각각 $3.177{\pm}0.872$, $3.385{\pm}0.681$, $3.651{\pm}0.550$ m/s로 측정되었고 이에 따라 동적 효율은 각각 0.732, 0.801, 0.973으로 계산되었다.

건물냉방부하에 대한 동적 인버스 모델링기법의 EnergyPlus 건물모델 적용을 통한 성능평가 (Performance Evaluation of a Dynamic Inverse Model with EnergyPlus Model Simulation for Building Cooling Loads)

  • 이경호
    • 설비공학논문집
    • /
    • 제20권3호
    • /
    • pp.205-212
    • /
    • 2008
  • This paper describes the application of an inverse building model to a calibrated forward building model using EnergyPlus program. Typically, inverse models are trained using measured data. However, in this study, an inverse building model was trained using data generated by an EnergyPlus model for an actual office building. The EnergyPlus model was calibrated using field data for the building. A training data set for a month of July was generated from the EnergyPlus model to train the inverse model. Cooling load prediction of the trained inverse model was tested using another data set from the EnergyPlus model for a month of August. Predicted cooling loads showed good agreement with cooling loads from the EnergyPlus model with root-mean square errors of 4.11%. In addition, different control strategies with dynamic cooling setpoint variation were simulated using the inverse model. Peak cooling loads and daily cooling loads were compared for the dynamic simulation.

Energy constraint control in numerical simulation of constrained dynamic system

  • 윤석준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.376-382
    • /
    • 1991
  • In the analysis of constrained holonomic systems, the Lagange multiplier method yields a system of second-order ordinary differential equations of motion and algebraic constraint equations. Conventional holonomic or nonholonomic constraints are defined as geometric constraints in this paper. Previous works concentrate on the geometric constraints. However, if the total energy of a dynamic system can be computed from the initial energy plus the time integral of the energy input rate due to external or internal forces, then the total energy can be artificially treated as a constraint. The violation of the total energy constraint due to numerical errors can be used as information to control these errors. It is a necessary condition for accurate simulation that both geometric and energy constraints be satisfied. When geometric constraint control is combined with energy constraint control, numerical simulation of a constrained dynamic system becomes more accurate. A new convenient and effective method to implement energy constraint control in numerical simulation is developed based on the geometric interpretation of the relation between constraints in the phase space. Several combinations of energy constraint control with either Baumgarte's Constraint Violation Stabilization Method (CVSM) are also addressed.

  • PDF