• Title/Summary/Keyword: Dynamic electric field

Search Result 206, Processing Time 0.021 seconds

Thermopiezoelastic Nonlinear Dynamic Characteristics of Piezolaminated Plates (압전적층판의 열-압전-탄성 동적 비선형 작동특성)

  • Oh, Il-Kwon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.662-667
    • /
    • 2005
  • Nonlinear dynamics of active piezolaminated plates are investigated with respect to the thermopiezoelastic behaviors. For largely deformed structures with small strain, the incremental total Lagrangian formulation is presented based on the virtual work principles. A multi field layer wise finite shell element is proposed for assuring high accuracy and non-linearity of displacement, electric and thermal fields. For dynamic consideration of thermopiezoelastic snap through phenomena, the implicit Newmark's scheme with the Newton-Raphson iteration is implemented for the transient response of various piezolaminated models with symmetric or eccentric active layers. The bifurcate thermal buckling of symmetric structural models is first investigated and the characteristics of piezoelectric active responses are studied for finding snap through piezoelectric potentials and the load path tracking map. The thermoelastic stable and unstable postbuckling, thermopiezoelastic snap through phenomena with several attractors are proved using the nonlinear time responses for various initial conditions and damping loss factors. Present results show that thermopiezoelastic snap through phenomena can result in the difficulty of buckling and postbuckling control of intelligent structures.

  • PDF

Vibration Control of Hybrid Smart Structure Using ER Fluids and Piezoelectric Ceramics (전기점성유체와 압전세라믹을 이용한 복합지능구조물의 진동제어)

  • 윤신일;박근효;한상보
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.8
    • /
    • pp.612-618
    • /
    • 2003
  • A hybrid vibration control scheme using ER fluid and PZT patches is proposed. Dynamic characteristics of the beam embedded with the ER fluid can be controled by changing the strength of the electric field applied on the ER fluid, thus provides a mean to avoid the resonance. It was found that active vibration control of the structure embedded with ER fluid failed to suppress the vibration excited with broad band frequency due to the limited change of the dynamic characteristics of the structure. To compensate this limited effect of the control scheme with ER fluid alone, PPF control using PZT patches as sensors and actuators is added to construct a hybrid controller. Experimental results suggests that proposed hybrid controller is effective to suppress the additional resonance vibration that appears when each controller is used alone.

Dynamic Electrical Breakdown Characteristics of Liquid Nitrogen (액체 $N_2$의 동적 절연파괴 특성)

  • 김영석;정종만;곽민환;백승명;장현만;김상현
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.359-362
    • /
    • 1998
  • Electrical breakdown characteristics of liquid nitrogen(LNd used as both coolant and insulator for high $T_c$ superconductor system is very important. This paper presents dynamic breakdown characteristics of liquid nitrogen by quench penomena of thermal bubble under high electric field. As the result, the breakdown mechanism of $LN_2$ depends on thermal bubble effect. The breakdown voltage decreases slightly with increasing heating. In the Electrode arrangement, electrical breakdown voltage of horizontal arrangement appears lower than that of vertical arrangement.

  • PDF

Big data analysis via computer and semi numerical simulations for dynamic responses of complex nanosystems

  • Allam, Maalla;Xiaoping, Huang;Hongkai, Zhou
    • Advances in nano research
    • /
    • v.13 no.6
    • /
    • pp.599-617
    • /
    • 2022
  • In the present research, for the first time, the vibrational as well as buckling characteristics of a three-layered curved nanobeam including a core made of functionally graded (FG) material and two layers of smart material-piezo-magneto-electric-resting on a Winkler Pasternak elastic foundation are examined. The displacement field for the nanobeam is chosen via Timoshenko beam theory. Also, the size dependency is taken into account by using nonlocal strain gradient theory, aka NSGT. Then, by employing Hamilton's principle, energy procedure, the governing equations together with the boundary conditions are achieved. The solution procedure is a numerical solution called generalized differential quadrature method, or GDQM. The accuracy and reliability of the formulation alongside solution method is examined by using other published articles. Lastly, the parameter which can alter and affect the buckling or vocational behavior of the curved nanobeam is investigated in details.

Exact solution of a thick walled functionally graded piezoelectric cylinder under mechanical, thermal and electrical loads in the magnetic field

  • Arefi, M.;Rahimi, G.H.;Khoshgoftar, M.J.
    • Smart Structures and Systems
    • /
    • v.9 no.5
    • /
    • pp.427-439
    • /
    • 2012
  • The present paper deals with the analytical solution of a functionally graded piezoelectric (FGP) cylinder in the magnetic field under mechanical, thermal and electrical loads. All mechanical, thermal and electrical properties except Poisson ratio can be varied continuously and gradually along the thickness direction of the cylinder based on a power function. The cylinder is assumed to be axisymmetric. Steady state heat transfer equation is solved by considering the appropriate boundary conditions. Using Maxwell electro dynamic equation and assumed magnetic field along the axis of the cylinder, Lorentz's force due to magnetic field is evaluated for non homogenous state. This force can be employed as a body force in the equilibrium equation. Equilibrium and Maxwell equations are two fundamental equations for analysis of the problem. Comprehensive solution of Maxwell equation is considered in the present paper for general states of non homogeneity. Solution of governing equations may be obtained using solution of the characteristic equation of the system. Achieved results indicate that with increasing the non homogenous index, different mechanical and electrical components present different behaviors along the thickness direction. FGP can control the distribution of the mechanical and electrical components in various structures with good precision. For intelligent properties of functionally graded piezoelectric materials, these materials can be used as an actuator, sensor or a component of piezo motor in electromechanical systems.

Dynamic Characteristics of Ionic-Polymer-Metal-Composite (IPMC의 동적 특성)

  • Jeon, J.H.;Shin, D.G.;Lee, K.H.;Oh, I.K.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.356-359
    • /
    • 2005
  • Ionic-polymer-metal-composite(IPMC), one of new actuation materials of electroactive polymers plated with noble metallic electrodes is known for the fast bending upon electric field. The IPMC strip bends towards anode under electrical field. It has many merits of low driving voltage, quick responsiveness, high durability, possibility of miniaturizability. In this paper, we studied for developing the large deflection of IPMC according several fabricating parameters. We measured the large deflection by the different process of sandpaper and sandblasting in surface treatment, the initial compositing process and the surface electroding process, and the different counter ions in ion exchanging process. In fundamental, the displacement of IPMC strip depends on voltage magnitude and applied signal frequency and its maximum deformation is observed at a critical frequency, resonant frequency.

  • PDF

The Study on Impurity Concentration Optimizing for the Refresh Time Improvement of DRAM (DRAM의 Refresh 시간 개선을 위한 불순물 농도 최적화에 관한 연구)

  • Lee Yong-Hui;Woo Kyong-Hwan;Yi Cheon Hee
    • Proceedings of the IEEK Conference
    • /
    • 2000.11b
    • /
    • pp.325-328
    • /
    • 2000
  • The control of the data retention time is a main issue for realizing future high density dynamic random access memory. In this paper, we propose the new implantation scheme by gate-related ion beam shadowing effect and buffer-enhanced $\Delta$ Rp increase using buffered N- implantation with tilt and 4X-rotation that is designed on the basis of the local-field-enhancement model of the tail component. We report an excellent tail improvement of the retention time distribution attributed to the reduction of electric field across the cell junction due to the redistribution of N- concentration which is intentionally caused by Ion Beam Shadowing and Buffering Effect using tilt implantation with 4X-rotation.

  • PDF

Analysis of Operating Characteristics of PM-Type Magnetic Circuit Breaker

  • Jun, Hee-Deuk;Woo, Kyung-Il;Kwon, Byung-Il
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.2
    • /
    • pp.74-78
    • /
    • 2003
  • This paper describes the operating characteristic analysis of the PM-type linear oscillatory actuator used as a magnetic circuit breaker for the electromagnetic field, electric circuit, and mechanical motion problems. Transient calculations are based upon a 2D finite element magnetic field solution including non-linearity of materials. Changes of the dynamic characteristics from the eddy current in the plunger are quantified from finite element analysis. A new laminated model is proposed to decrease the eddy current effect.

Implementation of FPGA-Based Real-Time data acquisition system for overhead contact wire (FPGA를 이용한 전차선로 실시간 계측시스템 구현)

  • Na, Hae-Kyung;Park, Young;Cho, Yong-Hyeon;Jung, Ho-Sung;Park, Hyun-Jun;Song, Joon-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.531-532
    • /
    • 2006
  • This paper presents the implementation of Real-time data acquisition system for dynamic characteristics of overhead contact wire in electric railway. The reconfigurable field-programmable gate array (FPGA) and LabVIEW graphical development tools have been used to Real-time monitoring system. The results from a field test show that the proposed technique and developed system can be practically applied to measure the assessment quantity or quantities on overhead contact lines for the online real-time process monitoring.

  • PDF

Field Adaptability Test for the Full Load Rejection of Nuclear Turbine Speed Controllers using Dynamic Simulator

  • Choi, In-Kyu;Kim, Jong-An;Woo, Joo-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.7
    • /
    • pp.67-74
    • /
    • 2009
  • This paper describes the speed control functions of the typical steam turbine speed controllers and the test results of generator load rejection simulations. The goal of the test is to verify the speed controller's ability to limit the steam turbine's peak speed within a predetermined level in the event of generator load loss. During normal operations, the balance between the driving force of the steam turbine and the braking force of the generator load is maintained and the speed of the turbine-generator is constant. Upon the generator's load loss, in other word, the load rejection, the turbine speed would rapidly increase up to the peak speed at a fast acceleration rate. It is required that the speed controller has the ability to limit the peak speed below the overspeed trip point, which is typically 110[%] of rated speed. If an actual load rejection occurs, a substantial amount of stresses will be applied to the turbine as well as other equipments, In order to avoid this unwanted situation, not an actual test but the other method is necessary. We are currently developing the turbine control system for another nuclear power plant and have plan to do the simulation suggested in this paper.