• Title/Summary/Keyword: Dynamic direct shear test

Search Result 26, Processing Time 0.017 seconds

A Prediction Model of Resilient Modulus for Recycled Crushed-Rock-Soil-Mixture (재활용 암버력 - 토사의 회복탄성계수 예측 모델)

  • Park, In-Beom;Mok, Young-Jin
    • International Journal of Highway Engineering
    • /
    • v.12 no.4
    • /
    • pp.147-155
    • /
    • 2010
  • A prediction model of resilient modulus($E_R$) was developed for recycled crushed-rock-soil mixtures. The evaluation of $E_R$, using the "orthodox" repeated loading tri-axial test, is not feasible for such a large-size gravelly material. An alternative method was proposed hereby using the subtle different modulus called nonlinear dynamic modulus. The prediction model was developed by utilizing in-situ measured shear modulus($G_{max}$) and its reduction curves of modeled materials using the large free-free resonant column test. A pilot evaluation of the model parameters was carried out for recycled crushed-rock-soil-mixture at a highway construction site near Gimcheon, Korea. The values of the model parameters($A_E,\;n_E,\;{\varepsilon}_r\;and\;{\alpha}$) were proposed as 9618, 0.47, 0.0135, and 0.8, respectively.

Dynamic Frictional Behavior of Artificial Rough Rock Joints under Dynamic Loading (진동하중 하에서 거친 암석 절리면의 동력 마찰거동)

  • Jeon Seok-Won;Park Byung-Ki
    • Tunnel and Underground Space
    • /
    • v.16 no.2 s.61
    • /
    • pp.166-178
    • /
    • 2006
  • Recently, the frequency of occurring dynamic events such as earthquakes, explosives blasting and other types of vibration has been increasing. Besides, the chances of exposure for rock discontinuities to free faces get higher as the scale of rock mass structures become larger. For that reason, the frictional behavior of rock joints under dynamic conditions needs to be investigated. In this study, artificially fractured rock joint specimens were prepared in order to examine the dynamic frictional behavior of rough rock joint. Roughness of each specimen was characterized by measuring surface topography using a laser profilometer and a series of shaking table tests was carried out. For mated joints, the static friction angle back-calculated ken the yield acceleration was $2.7^{\circ}$ lower than the tilt angle on average. The averaged dynamic friction angle for unmated joints was $1.8^{\circ}$ lower than the tilt angle. Displacement patterns of sliding block were classified into 4 types and proved to be related to the first order asperity of rock joint. The tilt angle and the static friction angle for mated joints seem to be correlated to micro average inclination angle which represents the second order asperity. The tilt angle and the dynamic friction angle for unmated Joints, however, have no correlation with roughness parameters. Friction angles obtained by shaking table test were lower than those by direct shear test.

Direct Tensile Properties of Fiber-Reinforced Cement Based Composites according to the Length and Volume Fraction of Amorphous Metallic Fiber (비정질 강섬유의 길이 및 혼입률에 따른 섬유보강 시멘트복합체의 직접인장특성)

  • Kim, Hong-Seop;Kim, Gyu-Yong;Lee, Sang-Kyu;Choe, Gyeong-Cheol;Nam, Jeong-Soo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.3
    • /
    • pp.201-207
    • /
    • 2019
  • In this study, the direct tensile properties of amorphous metallic fiber-reinforced cement based composites according to the strain was evaluated. A thin plate-shape amorphous metallic fiber with 15mm and 30mm in length was used. And fiber-reinforced cement based composites were prepared with contents of 1.0, 1.5, 2.0%. The direct tensile test was conducted under the conditions of $10^{-6}/s(static)$ and $10^1/s(dynamic)$ strain rate. As a results, amorphous metallic fiber with a length of 15mm was observed in pull-out behavior from the cement matrix because of the short fiber length and large portion of mixed fiber. On the other hand, amorphous metallic fiber with a length of 30mm were not pulled out from matrix because the bonding force between the fiber and matrix was large due to rough surface and large specific surface area. However, fracture occurred because thin plate shape fibers were vulnerable to shear force. Tensile strength, strain capacity and toughness were improved due to the increase in the fiber length. The dynamic increase factor of L15 was larger that of L30 because the bonding performance of the fiber-matrix interface is significantly affected by the strain rate.

Analysis of the Characteristics of Liquidization Behavior of Sand Ground in Korea Using Repeated Triaxial Compression Test (반복삼축압축시험을 이용한 국내 모래지반의 액상화 거동 특성 비교)

  • Seo, Hyeok;Kim, Daehyeon
    • The Journal of Engineering Geology
    • /
    • v.31 no.4
    • /
    • pp.493-506
    • /
    • 2021
  • Liquefaction refers to a phenomenon in which excessive pore water pressure occurs when a dynamic load such as an earthquake rapidly acts on a loose sandy soil saturated with soil, and the ground loses effective stress and becomes liquefied. The indoor repeated test for liquefaction evaluation can be confirmed through the repeated triaxial compression test and the repeated shear test. In this regard, this study tried to confirm the liquefaction resistance strength according to the relative density and particle size distribution of sand using the repeated triaxial compression test. As a result of the experiment, it was confirmed that the liquefaction resistance strength increased as the relative density increased regardless of the soil classification, and the liquefaction resistance strength according to the particle size distribution of the sand was confirmed that the liquefaction resistance strength of the SP sample close to SW was significantly higher. In addition, as a result of analyzing 30% of fine powder compared to 0% of fine powder, as the relative density increased to 40~70%, the liquefaction resistance strength decreased by 5~20%, and the domestic weathered soil ground had a fine liquefaction resistance strength compared to Jumunjin standard sand. When the minute was 10%, it was measured to be 30% or more, and when the fine particle was 30%, it was measured to be less than 50%.

Stemming Effect of the Crushed Granite Sand as Fine Aggregate at the Mortar Blasting Test (화강암 부순모래의 발파전색효과 연구)

  • Kim, Hak-Sung;Lee, Sang-Eun
    • Tunnel and Underground Space
    • /
    • v.21 no.4
    • /
    • pp.320-327
    • /
    • 2011
  • In this study, for stemming effect in blast of the mortar block body, the crushed granite sand as fine aggregate, which is waste rock obtained at the ○○ limestone mine, was investigated to compare with stemming materials such as sea sand, river sand, clayed soil and water can be acquired easily at the field. The mortar block body was manufactured with the dimensions of 50 cm width, 50 cm length and 70 cm height. The direct shear and sieve separator test were performed, and the properties of friction resistance were analyzed by the extrusion test for five stemming materials. Axial strain of steel bar and ejection velocity of stemming materials due to the explosive shock pressure in blasthole with the stemming length of 10 cm and 20 cm in the mortar blast test were measured by the dynamic data acquisition system. Among stemming materials, axial strain showed the largest value at the crushed granite sand as fine aggregate, and the ejection velocity was the smallest value at the stemming of water. The results has shown correlate with harden unit weight in blasthole, particle size distribution, shear resistance, and extrusion strength of stemming materials. The ejection velocity of stemming material at the mouth of blasthole and the axial strain of steel bar in the inside of blasthole tend to be inversely proportional to each other, represent exponentially.

Comparison of numerical and analytical solutions for reinforced soil wall shaking table tests

  • Zarnani, Saman;El-Emam, Magdi M.;Bathurst, Richard J.
    • Geomechanics and Engineering
    • /
    • v.3 no.4
    • /
    • pp.291-321
    • /
    • 2011
  • The paper describes a simple numerical FLAC model that was developed to simulate the dynamic response of two instrumented reduced-scale model reinforced soil walls constructed on a 1-g shaking table. The models were 1 m high by 1.4 m wide by 2.4 m long and were constructed with a uniform size sand backfill, a polymeric geogrid reinforcement material with appropriately scaled stiffness, and a structural full-height rigid panel facing. The wall toe was constructed to simulate a perfectly hinged toe (i.e. toe allowed to rotate only) in one model and an idealized sliding toe (i.e. toe allowed to rotate and slide horizontally) in the other. Physical and numerical models were subjected to the same stepped amplitude sinusoidal base acceleration record. The material properties of the component materials (e.g. backfill and reinforcement) were determined from independent laboratory testing (reinforcement) and by back-fitting results of a numerical FLAC model for direct shear box testing to the corresponding physical test results. A simple elastic-plastic model with Mohr-Coulomb failure criterion for the sand was judged to give satisfactory agreement with measured wall results. The numerical results are also compared to closed-form solutions for reinforcement loads. In most cases predicted and closed-form solutions fall within the accuracy of measured loads based on ${\pm}1$ standard deviation applied to physical measurements. The paper summarizes important lessons learned and implications to the seismic design and performance of geosynthetic reinforced soil walls.