• Title/Summary/Keyword: Dynamic diagnosis

Search Result 368, Processing Time 0.029 seconds

A structural damage detection approach using train-bridge interaction analysis and soft computing methods

  • He, Xingwen;Kawatani, Mitsuo;Hayashikawa, Toshiro;Kim, Chul-Woo;Catbas, F. Necati;Furuta, Hitoshi
    • Smart Structures and Systems
    • /
    • v.13 no.5
    • /
    • pp.869-890
    • /
    • 2014
  • In this study, a damage detection approach using train-induced vibration response of the bridge is proposed, utilizing only direct structural analysis by means of introducing soft computing methods. In this approach, the possible damage patterns of the bridge are assumed according to theoretical and empirical considerations at first. Then, the running train-induced dynamic response of the bridge under a certain damage pattern is calculated employing a developed train-bridge interaction analysis program. When the calculated result is most identical to the recorded response, this damage pattern will be the solution. However, owing to the huge number of possible damage patterns, it is extremely time-consuming to calculate the bridge responses of all the cases and thus difficult to identify the exact solution quickly. Therefore, the soft computing methods are introduced to quickly solve the problem in this approach. The basic concept and process of the proposed approach are presented in this paper, and its feasibility is numerically investigated using two different train models and a simple girder bridge model.

Non-Functioning, Malignant Pancreatic Neuroendocrine Tumor in a 16-Year-old Boy: A Case Report (16세 남아에서 발생한 췌장의 비기능성 악성 신경내분비 종양: 증례 보고)

  • Lim, Se-Woong;Lee, Young-Hwan;Choi, See-Sung;Cho, Hyun-Sun
    • Investigative Magnetic Resonance Imaging
    • /
    • v.14 no.2
    • /
    • pp.145-150
    • /
    • 2010
  • We report the case of a 16-year-old boy with a solid pancreatic mass which proved to be a nonfunctioning, malignant pancreatic neuroendocrine tumor (PNET). In pediatric patients, malignant pancreatic tumors are rare, especially malignant PNET. When dynamic contrast enhanced MRI showed a well enhancing solid pancreatic tumor on arterial and delayed phases and combined with malignant features, such as vascular invasion, invasion of adjascent organs, and lymphadenopathy, we should include malignant pancreatic neuroendocrine tumor in the differential diagnosis of childhood pancreatic tumors.

An overview of current knowledge about cell-free RNA in amniotic fluid

  • Jung, Yong Wook;Shin, Yun Jeong;Shim, Sung Han;Cha, Dong Hyun
    • Journal of Genetic Medicine
    • /
    • v.13 no.2
    • /
    • pp.65-71
    • /
    • 2016
  • Cell-free nucleic acids (cf-NAs) originate in trophoblasts and are detected in the maternal plasma. Using innovative bioinformatic technologies such as next-generation sequencing, cf-NAs in the maternal plasma have been rapidly applied in prenatal genetic screening for fetal aneuploidy. Amniotic fluid is a complex and dynamic fluid that provides growth factors and protection to the fetus. In 2001, the presence of cf-NA in amniotic fluid was reported. Amniotic fluid is in direct contact with the fetus and is derived from fetal urine and maternal and fetal plasma. Therefore, these genetic materials have been suggested to reflect fetal health and provide real-time genetic information regarding fetal development. Recently, several studies evaluated the global gene expression changes of amniotic fluid cell-free RNA according to gestational age. In addition, by analyzing the transcriptome in the amniotic fluid of fetal aneuploidy, potential key pathways and novel biomarkers for fetal chromosomal aneuploidy were identified. Here, we review the current knowledge of cell-free RNA in amniotic fluid and suggest future research directions.

A Study on Fault Detection for Photovoltaic Power Modules using Statistical Comparison Scheme (통계학적 비교 기법을 이용한 태양광 모듈의 고장 유무 검출에 관한 연구)

  • Cho, Hyun Cheol;Jung, Young Jin;Lee, Gwan Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.4
    • /
    • pp.89-93
    • /
    • 2013
  • In recent years, many investigations about photovoltaic power systems have been significantly carried out in the fields of renewable power energy. Such research area generally includes developments of highly efficient solar cells, advanced power conversion systems, and smart monitoring systems. A generic objective of fault detection and diagnosis techniques is to timely recognize unexpected faulty of dynamic systems so that economic demage occurred by such faulty is decreased by means of engineering techniques. This paper presents a novel fault detection approach for photovoltaic power arrays which are electrically connected in series and parallels. In the proposed fault detection scheme, we first measure all of photovoltaic modules located in each array by using electronic sense systems and then compare each measurement in turn to detect location of fault module through statistic computation algorithm. We accomplish real-time experiments to demonstrate our proposed fault detection methodology by using a test-bed system including two 20 watt photovoltaic modules.

Oral and Human Microbiome Research

  • Chung, Sung-Kyun
    • Journal of dental hygiene science
    • /
    • v.19 no.2
    • /
    • pp.77-85
    • /
    • 2019
  • In the past gut microbiome has been the main focus of microbiome research. Studies about the microbiome inside oral cavities and other organs are underway. Studies about the relationship between noninfectious diseases and periodontal diseases, and the negative effects of harmful oral microbes on systemic health have been published in the recent past. A lot of attention is being paid towards fostering a healthy oral microbial ecosystem. This study aimed to understand the roles and effects of the microbiome inside the human body can potentially help cure various diseases including inflammatory bowel diseases with no known cure such as Crohn's disease, atopic dermatitis, obesity, cancer, diabetes, brain diseases and oral diseases. The present study examined technological trends in the correlation between the human microbiome and diseases in the human body, interactions between the human body's immunity, the metabolic system, and the microbiome, and research trends in other countries. While it has been proven that human microbiome is closely correlated with human diseases, most studies are still in the early stage of trying to compare the composition of microbiomes between health and patient groups. Since the oral environment is a dynamic environment that changes due to not only food intake but also other external factors such as lifestyle, hygiene, and drug intake, it is necessary to continue in-depth research on the microbiome composition characteristics to understand the complex functions of oral microorganisms. Analyzing the oral microbiome using computational technology may aid in disease diagnosis and prevention.

Online railway wheel defect detection under varying running-speed conditions by multi-kernel relevance vector machine

  • Wei, Yuan-Hao;Wang, You-Wu;Ni, Yi-Qing
    • Smart Structures and Systems
    • /
    • v.30 no.3
    • /
    • pp.303-315
    • /
    • 2022
  • The degradation of wheel tread may result in serious hazards in the railway operation system. Therefore, timely wheel defect diagnosis of in-service trains to avoid tragic events is of particular importance. The focus of this study is to develop a novel wheel defect detection approach based on the relevance vector machine (RVM) which enables online detection of potentially defective wheels with trackside monitoring data acquired under different running-speed conditions. With the dynamic strain responses collected by a trackside monitoring system, the cumulative Fourier amplitudes (CFA) characterizing the effect of individual wheels are extracted to formulate multiple probabilistic regression models (MPRMs) in terms of multi-kernel RVM, which accommodate both variables of vibration frequency and running speed. Compared with the general single-kernel RVM-based model, the proposed multi-kernel MPRM approach bears better local and global representation ability and generalization performance, which are prerequisite for reliable wheel defect detection by means of data acquired under different running-speed conditions. After formulating the MPRMs, we adopt a Bayesian null hypothesis indicator for wheel defect identification and quantification, and the proposed method is demonstrated by utilizing real-world monitoring data acquired by an FBG-based trackside monitoring system deployed on a high-speed trial railway. The results testify the validity of the proposed method for wheel defect detection under different running-speed conditions.

Development of the structural health record of containment building in nuclear power plant

  • Chu, Shih-Yu;Kang, Chan-Jung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.2038-2045
    • /
    • 2021
  • The main objective of this work is to propose a reliable routine standard operation procedures (SOP) for structural health monitoring and diagnosis of nuclear power plants (NPPs). At present, NPPs have monitoring systems that can be used to obtain the quantitative health record of containment (CTMT) buildings through system identification technology. However, because the measurement signals are often interfered with by noise, the identification results may introduce erroneous conclusions if the measured data is directly adopted. Therefore, this paper recommends the SOP for signal screening and the required identification procedures to identify the dynamic characteristics of the CTMT of NPPs. In the SOP, three recommend methods are proposed including the Recursive Least Squares (RLS), the Observer Kalman Filter Identification/Eigensystem Realization Algorithm (OKID/ERA), and the Frequency Response Function (FRF). The identification results can be verified by comparing the results of different methods. Finally, a preliminary CTMT healthy record can be established based on the limited number of earthquake records. It can be served as the quantitative reference to expedite the restart procedure. If the fundamental frequency of the CTMT drops significantly after the Operating Basis Earthquake and Safe Shutdown Earthquake (OBE/SSE), it means that the restart actions suggested by the regulatory guide should be taken in place immediately.

A Study on the Charging and Diagnosis System of xEV Reusable Waste Battery

  • Park, Sung-Jun;Kim, Chun-Sung;Park, Seong-Mi
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.6_1
    • /
    • pp.669-681
    • /
    • 2021
  • As the supply of xEV in Korea is rapidly increasing, the amount of waste batteries is expected to increase rapidly, but the current recycling system for waste xEV batteries is very insufficient. In order to properly utilize the xEV reusable battery module, it is essential to classify it into a type that has similar discharge characteristics to the current state of health(SOH), which is the discharge capacity of the battery. This paper proposes a system that can minimize the exchange of energy with the KEPCO system by using the charging/discharging method by circulating power between batteries in order to minimize the power consumption when charging and discharging waste batteries. In the proposed system, a function to measure parameters during the charging/discharging test of the waste battery was implemented to build a customized big date for the test waste battery. In addition, the dynamic characteristics of the proposed circuit were analyzed using PSIM, which is useful for power electronics analysis, and the validity of the proposed circuit was verified through experiments.

Use of Ultrasonography for Foot and Ankle Sports Injuries (족부 및 족관절 스포츠 손상에서 초음파의 활용)

  • Moon, Youngseok;Kim, Chong-bin;Ahn, Jae Hoon
    • Journal of the Korean Orthopaedic Association
    • /
    • v.54 no.5
    • /
    • pp.402-410
    • /
    • 2019
  • Sports injuries of the foot and ankle are commonly encountered in clinical practice. Ultrasound is very useful for the diagnosis of such injuries, because it is more economical, readily accessible, and can perform a dynamic study compared to magnetic resonance imaging. This review focused on the sonographic features of common foot and ankle sports injuries.

Development of Embedded Transmission Simulator for the Verification of Forklift Shift Control Algorithm (지게차 변속제어 알고리즘 검증을 위한 임베디드 변속기 시뮬레이터 개발)

  • Gyuhong Jung
    • Journal of Drive and Control
    • /
    • v.20 no.4
    • /
    • pp.17-26
    • /
    • 2023
  • A forklift is an industrial vehicle that lifts or transports heavy objects using a hydraulically operated fork, and is equipped with an automatic transmission for the convenience of repetitive transportation, loading, and unloading work. The Transmission Control Unit (TCU) is a key component in charge of the shift control function of an automatic transmission. It consists of an electric circuit with an input/output signal interface function and firmware running on a microcontroller. To develop TCU firmware, the development process of shifting algorithm design, firmware programming, verification test, and performance improvement must be repeated. A simulator is a device that simulates a mechanical system having dynamic characteristics in real time and simulates various sensor signals installed in the system. The embedded transmission simulator is a simulator that is embedded in the TCU firmware. information related to the mechanical system that is necessary for TCU normal operation. In this study, an embedded transmission simulator applied to the originally developed forklift TCU firmware was designed and used to verify various forklift shift control algorithms.