• 제목/요약/키워드: Dynamic device configuration

검색결과 32건 처리시간 0.018초

Removal of residual VOCs in a collection chamber using decompression for analysis of large volatile sample

  • Lee, In-Ho;Byun, Chang Kyu;Eum, Chul Hun;Kim, Taewook;Lee, Sam-Keun
    • 분석과학
    • /
    • 제34권1호
    • /
    • pp.23-35
    • /
    • 2021
  • In order to measure the volatile organic compounds (VOCs) of a sample which is too large to use commercially available chamber, a stainless steel vacuum chamber (VC) (with an internal diameter of 205 mm and a height of 50 mm) was manufactured and the temperature of the chamber was controlled using an oven. After concentrating the volatiles of the sample in the chamber by helium gas, it was made possible to remove residual volatile substances present in the chamber under reduced pressure ((2 ± 1) × 10-2 mmHg). The chamber was connected to a purge & trap (P&T) using a 6 port valve to concentrate the VOCs, which were analyzed by gas chromatography-mass spectrometry (GC-MS) after thermal desorption (VC-P&T-GC-MS). Using toluene, the toluene recovery rate of this device was 85 ± 2 %, reproducibility was 5 ± 2 %, and the detection limit was 0.01 ng L-1. The method of removing VOCs remaining in the chamber with helium and the method of removing those with reduced pressure was compared using Korean drinking water regulation (KDWR) VOC Mix A (5 μL of 100 ㎍ mL-1) and butylated hydroxytoluene (BHT, 2 μL of 500 ㎍ mL-1). In case of using helium, which requires a large amount of gas and time, reduced pressure ((2 ± 1) × 10-2 mmHg) only during the GC-MS running time, could remove VOCs and BHT to less than 0.1 % of the original injection concentration. As a result of analyzing volatile substances using VC-P&T-GC-MS of six types of cell phone case, BHT was detected in four types and quantitatively analyzed. Maintaining the chamber at reduced pressure during the GC-MS analysis time eliminated memory effect and did not affect the next sample analysis. The volatile substances in a cell phone case were also analyzed by dynamic headspace (HT3) and GC-MS, and the results of the analysis were compared with those of VC-P&T-GC-MS. Considering the chamber volume and sample weight, the VC-P&T configuration was able to collect volatile substances more efficiently than the HT3. The VC-P&T-GC-MS system is believed to be useful for VOCs measurement of inhomogeneous large sample or devices used inside clean rooms.

소형민수헬기 능동진동제어시스템 개발 (Development and Verification of Active Vibration Control System for Helicopter)

  • 김남조;곽동일;강우람;황유상;김도형;김찬동;이기진;소희섭
    • 한국항공우주학회지
    • /
    • 제50권3호
    • /
    • pp.181-192
    • /
    • 2022
  • 헬기의 능동진동제어시스템(AVCS)은 주로터로부터 발생되는 진동을 제어하며, 수동형 진동저감장치 대비 저중량으로 우수한 진동저감 성능을 발휘한다. 본 논문에서는 FxLMS 알고리즘을 기반으로 타코미터 및 가속도 센서 신호를 통해 연산된 제어명령을 하중발생기(CFG)로 전달하여 소형민수헬기의 진동을 제어하는 소프트웨어 개발 및 검증 내용을 제시하였다. DO-178C /DO-331 표준에 따라 모델 기반 설계 기법을 통해 진동제어 소프트웨어를 개발하였으며, PILS 및 HILS 환경에서 실시간 작동 성능을 평가하였다. 특히, PILS 환경에서는 LDRA 기반 검증 커버리지를 통해 소프트웨어의 신뢰성을 향상시켰다. AVCS를 소형민수헬기에 적용하기 위해 지상/비행시험을 통해 대상 헬기 동적응답특성 모델을 획득하였다. 이를 기반으로 시스템 최적화 분석 및 비행시험을 통해 최적 성능을 발휘하는 AVCS 형상을 결정하고, STC 인증을 획득하였다.