• Title/Summary/Keyword: Dynamic comfort

Search Result 280, Processing Time 0.027 seconds

Assessment of Train Running Safety, Ride Comfort and Track Serviceability at Transition between Floating Slab Track and Conventional Concrete Track (플로팅 슬래브궤도와 일반 콘크리트궤도 접속구간에서의 열차 주행 안전, 승차감 및 궤도 사용성 평가)

  • Jang, Seung-Yup;Yang, Sin-Chu
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.1
    • /
    • pp.48-61
    • /
    • 2012
  • It is of great importance to assure the running safety, ride comfort and serviceability in designing the floating slab track for mitigation of train-induced vibration. In this paper, for this, analyzed are the system requirements for the running safety, ride comfort and serviceability, and then, the behavior of train and track at the floating slab track including the transition zone to the conventional concrete slab track according to several main design variables such as system natural frequency, arrangement of spring at transition, spacing of spring isolators, damping ratio and train speed, using the dynamic analysis technique considering the train-track interaction. The results of this study demonstrate that the discontinuity of the support stiffness at the transition results in a drastic increase of the dynamic response such as wheel-rail interaction force, rail bending stress and rail uplift force. Hence, it is efficient to decrease the spacing of springs or to increase the spring constants at the transition to obtain the running safety and serviceability. On the other hand, the vehicle body acceleration as a measure of ride comfort is little affected by the discontinuity of the stiffness at the transition, but by the system tuning frequency; thus, to obtain the ride comfort, it is of great significance to select the appropriate system tuning frequency. In addition, the effects of damping ratio, spacing of springs and train speed on the dynamic behavior of the system have been discussed.

A Study on the Vibration Characteristics due to the Running Conditions for Korean High Speed Train (한국형 고속전철의 주행조건에 따른 진동특성 분석에 관한 연구)

  • 박찬경;한영재;김영국;김석원;최강윤
    • Proceedings of the KSR Conference
    • /
    • 2003.10a
    • /
    • pp.125-130
    • /
    • 2003
  • Korean High Speed Train (KHST) designed to operate at 350km/h has been tested on high speed line in JungBu site since it was developed in 2002. The dynamic performances of railway vehicle are generally stability, safety and ride comfort. The stability performance of KHST was proved that it is stable at 400Km/h through Roller Rig test. The safety and ride comfort need to be predicted the capability of it at 350km/h by the on-line test because KHST is testing at 300km/h up to now. Therefor, in this paper, the safety and ride comfort at 350km/h are predicted the performance using the acceleration results at 300kw/h and these results show that the KHST's dynamic performances are very good. Also, it illustrate the two cases occurred the abnormal vibration of KHST during some on-line tests. The first case is that the variation of vertical acceleration of wheel is analyzed when an abrasion occur on wheel. The second case is that the lateral acceleration of wheel, bogie and body are analyzed when the KHST is unstable at high speed. The occurrences of these special phenomena were due to the some faults of the suspension and braking systems and the faults were improved. In present, it is testing with safety.

  • PDF

Semi-active and Active Vibration Control to Improve Ride Comfort in Railway Vehicle (철도차량 승차감 향상을 위한 반능동/능동 진동제어)

  • You, Wonhee;Shin, Yujeong;Hur, Hyunmoo;Park, Junhyuk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.248-253
    • /
    • 2013
  • The maximum speed is one of the most important performance in high speed railway vehicle. The higher the train speed is, the worse the ride comfort is, In order to solve this problem, a semi-active or active suspension can be applied to high speed railway vehicle. The variable damper with hydraulic solenoid valve is used in the semi-active suspension. But the variable damper with hydraulic solenoid valve requires tank for supplying fluid. The MR(Magneto Rheological) damper can be considered instead of hydraulic variable damper which needs additional device, i.e. reserver tank for fluid. In the case of active suspension, hydraulic actuator or electro-mechanical one is used to suppress the carbody vibration in railway vehicle. In this study the MR damper and electro-mechanical actuator was considered in secondary suspension system of high speed railway vehicle. The dynamic analysis was performed by using 10-DOF dynamic equations of railway vehicle. The performance of the semi-active suspension and active suspension system were reviewed by using MATLAB/Simulink S/W. The vibration suppression effect of semi-active and active suspension system were investigated experimentally by using 1/5-scaled railway vehicle model.

  • PDF

Optimum Design of Vehicle Powertrain Mounting System (자동차용 파워트레인 마운팅 시스템의 최적설계)

  • Kim, J.H.;Lee, S.J.;Lee, W.H.;Kim, J.R.
    • Journal of Power System Engineering
    • /
    • v.14 no.3
    • /
    • pp.33-38
    • /
    • 2010
  • Technology of vehicle industry has been developing and it is required a better vehicle performance than before. Therefore, the consumers are asking not only an economic efficiency, functionality, polished design, ride comfort and silence but also a driving stability. The ride comfort, silence and driving stability are influenced by the size of vehicle and various facilities. But the principal factor is a room noise and vibration sensed by a driver and passenger. Thus, the NVH of vehicle has been raised and used as a principal factor for evaluation of vehicle performance. The primary objective of this study is an optimized design of powertrain mounting system. To optimized design was applied MSC.Nastran optimization modules. Results of dynamic analysis for powertrain mounting system was investigated. By theses results, design variables was applied 12 dynamic spring constant. And the weighting factor according to translational displacement and rotational displacement applied 3 cases. The objective function was applied to minimize displacement of powertrain. And the design variable constraint was imposed dynamic spring constant ratio. The constraint of design variable for objective function was imposed bounce displacement for powertrain.

COMPARISON OF RIDE COMFORTS VIA EXPERIMENT AND COMPUTER SIMULATION

  • Yoo, W.S.;Park, S.J.;Park, D.W.;Kim, M.S.;Lim, O.K.;Jeong, W.B.
    • International Journal of Automotive Technology
    • /
    • v.7 no.3
    • /
    • pp.309-314
    • /
    • 2006
  • In this paper, the ride comfort from a computer simulation was compared to the experimental result. For measuring ride comfort of a passenger car, acceleration data was obtained from the floor and seat during highway running with different speeds. The measured acceleration components were multiplied by the proper weighting functions, and then summed together to calculate overall ride values. Testing several passenger cars, the ride comforts were compared. In order to investigate the effect of vibration signals on the steering wheel, an apparatus to measure the vibrations and weighting functions on the steering wheel were designed. The effect of the steering accelerations on the ride comfort were investigated and added for the overall ride comfort. For the computer simulations, Korean dummy models were developed based on the Hybrid III dummy models. For the Korean dummy scaling, the national anthropometric survey of Korean people was used. In order to compare and check the validity of the developed Korean dummy models, dynamic responses were compared to those of Hybrid III dummy models. The computer simulation using the MADYMO software was also compared to the experimental results.

Performance Verification for High Speed Railway Bridge on Test Operation of KTX (KTX 시운전시 고속철도 교량의 성능검증)

  • Na Sung Hoon;Yang Sin chu;Lee Jee Ha;Son Ki Jun
    • Proceedings of the KSR Conference
    • /
    • 2003.10b
    • /
    • pp.477-482
    • /
    • 2003
  • The railway bridges on the new high-speed line are the first structures designed and constructed by our local engineers for high-speed running. In securing running stability and riding comfort in high-speed running, it is very important to verify the performance of structures and local specifications and design criteria by measuring and analyzing the dynamic behavior of main structural members. In this study, 4 different types(simple-span, 2, 3, 4-continuous spans) of PCS Box bridges on the test line(Yongwa$\~$Simok section) were selected, each representing a different type of superstructures, in order to verify the performance of the bridges by measuring dynamic responses during the test-run of KTX. Reviews of the running stability and the riding comfort were carried out with the results of the measurement and the analyses of vibration acceleration, endrotation, distortion and deflection at midspan.

  • PDF

Vibration Analysis of Body Mount System on Chassis Frame (섀시 프레임 상의 바디 마운트계의 진동해석)

  • Lee, Chang-Ro;Ryu, Bong-Jo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.2
    • /
    • pp.141-146
    • /
    • 2010
  • This paper describes the static and dynamic characteristics of body mount system which are to be considered in the early design stage. At every location of body mount the static load and dynamic response to road input were calculated using the half car model. Normal mode analysis for the half car model was also performed. In the analysis the design parameters such as the stiffness of mount rubbers and their distribution on mount location were examined for improving ride comfort especially in the lower frequency range.

Analysis of Dynamic Behaviors for the Korea High Speed Train(KHST) by Using Non-Linear Creep Theory (비선형 크립이론을 이용한 한국형 고속전철의 동특성 해석)

  • 박찬경;김석원;김회선
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.1093-1098
    • /
    • 2002
  • Dynamic behaviors of the Korean High-speed Train(KHST) have been analyzed to investigate the performance on the stability, the safety and the ride comfort. Multi-body dynamics analysis program using Recursive method, called RecurDyn, have been employed in the numerical simulation. To model the wheel-rail contact, the RecurDyn uses its built-in module which uses the square root creep law. The accuracy of the rail module in RecurDyn. however, decreases in the analysis of flange contact because it linearizes the shape of the wheel and rail. To solve this problem, a nonlinear contact theory have been developed that considers the profiles of the wheel and rail. The results show that the KHST still needs more stability. The problem should be solved by the examinations of module and modeling.

  • PDF

Study of the Capsule Train Ride Comfort Improvement by using the Damping Control in Suspension System (현가장치 내 감쇠 제어를 이용한 캡슐트레인 승차감 향상 연구)

  • Lee, Jin-Ho;Lim, Jungyoul;You, Won-Hee;Lee, Kwansup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.547-557
    • /
    • 2020
  • In this study, damping control devices were applied to the suspension system of a capsule train, and the effects were investigated to improve the ride comfort. The superconductor electrodynamic suspension (SC-EDS) method is used for the capsule train levitation. This method has advantages such as no gap control and a large gap. However, the SC-EDS method has disadvantages such as large gap variation and small damping characteristics against outer vibration, which causes degradation of the ride comfort. In this study, the damping control devices in the primary and secondary suspension were considered to improve the ride comfort in the capsule train. Damping control devices in the primary and secondary suspension can reduce the vibration transmission from outer disturbances to the bogie and from the bogie to the car body, respectively. Simulations for dynamic characteristics analyses were conducted based on the capsule train dynamic model to investigate the effects of the damping control devices on the ride comfort. As a result, it was confirmed that the ride comfort requirements according to the ISO standard can be satisfied by applying the damping control in the capsule train suspension.