• Title/Summary/Keyword: Dynamic coefficient of stiffness

Search Result 179, Processing Time 0.02 seconds

A Theoretical Study on the Dynamic Characteristics of Damping Flexible Coupling(I) (유체감쇠 커플링의 동특성에 관한 이론적 연구(I))

  • 김종수;제양규;정재현;전효중
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.1
    • /
    • pp.11-22
    • /
    • 1994
  • The present works are the theoretical results of the study to develope a damping flexible coupling which has a high performance of control for the torsional vibrations of power shafts in a large machinery. It is established the analysis scheme of the multiple-leaf spring, to obtain the static coefficient of stiffness of the coupling. Also, the dynamic coefficient of stiffness and the damping coefficient of the coupling are indentified through the flow analysis for a induced flow of working fluid by the deflection of multiple-leaf springs. This paper dealt with damping contributions by the friction between each plate of the multiple-leaf spring. In this paper, it is found that the dynamic characteristics of the damping flexible coupling are strongly dependent on the stiffness and the number of the multiple-leaf spring, and also vary with the viscosity of working fluid and the vibration speed of the inner star.

  • PDF

Free Vibration Analysis of Lattice Type Structure by Transfer Stiffness Coefficient Method (전달 강성계수법에 의한 격자형 구조물의 자유 진동 해석)

  • 문덕홍;최명수;강화중
    • Journal of KSNVE
    • /
    • v.8 no.2
    • /
    • pp.361-368
    • /
    • 1998
  • Complex and large lattice type structures are frequently used in design of bridge, tower, crane and aerospace structures. In general, in order to analyze these structures we have used the finite element method(FEM). This method is the most widely used and powerful tool for structural analysis. However, it is necessary to use a large amount of computer memory and computation time because the FEM resuires many degrees of freedom for solving dynamic problems exactly for these complex and large structures. For overcoming this problem, the authors developed the transfer stiffness coefficient method(TSCM). This method is based on the concept of the transfer of the nodal dynamic stiffness coefficient which is related to force and displacement vector at each node. In this paper, the authors formulate vibration analysis algorithm for a complex and large lattice type structure using the transfer of the nodal dynamic stiffness coefficient. And we confirmed the validity of TSCM through numerical computational and experimental results for a lattice type structure.

  • PDF

Vibration Analysis for a Complex and Large Lattice Type Structure Using Transfer Dynamic Stiffness Coefficient (동강계수의 전달에 의한 복잡 거대한 격자형 구조물의 진동해석)

  • 문덕홍;최명수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.190-195
    • /
    • 1997
  • Recently it is increased by degrees to construct complex or large lattice type structures such as bridges, towers, cranes, and structures that can be used for space technology. In general, in order to analyze, these structures we have used the finite element method(FEM). In this method, however, it is necessary to use a large amount of computer memory and computation time because the FEM requires many degrees of freedom for solving dynamic problems for these structures. For overcoming this problem, the authors have developed the transfer dynamic stiffness coefficient method(TDSCM). This method is based on the concepts of the transfer and the synthesis of the dynamic stiffness coefficient which is related to force and displacement vector at each node. In this paper, the authors formulate vibration analysis algorithm for a complex and large lattice type structure using the transfer of the dynamic stiffness coefficient. And the validity of TDSCM demonstrated through numerical computational and experimental results.

  • PDF

Forced Vibration Analysis of Lattice Type Structure by Transfer Stiffness Coefficient Method (전달강성계수법에 의한 격자형 구조물의 강제진동 해석)

  • 문덕홍;최명수
    • Journal of KSNVE
    • /
    • v.8 no.5
    • /
    • pp.949-956
    • /
    • 1998
  • Complex and large lattice type structures are frequently used in design of bridge, tower, crane and aerospace structures. In general, in order to analyze these structures we have used the finite element method(FEM). This method is the most widely used and powerful method for structural analysis lately. However, it is necessary to use a large amount of computer memory and computational time because the FEM requires many degrees of freedom for solving dynamic problems exactly for these complex and large structures. For analyzing these structures on a personal computer, the authors developed the transfer stiffness coefficient method(TSCM). This method is based on the concept of the transfer of the nodal dynamic stiffness coefficient matrix which is related to force and displacement vector at each node. And we suggested TSCM for free vibration analysis of complex and large lattice type structures in the previous report. In this paper, we formulate forced vibration analysis algorithm for complex and large lattice type structures using extened TSCM. And we confirmed the validity of TSCM through computational results by the FEM and TSCM, and experimental results for lattice type structures with harmonic excitation.

  • PDF

An Experimental Study on the Dynamic Characteristics of Damping Flexible Coupling( II ) (유체감쇠 커플링의 동특성에 관한 실험적 연구(II))

  • 김종수;제양규;정재현;전효중
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.1
    • /
    • pp.23-31
    • /
    • 1994
  • The present works are the experimental results of the study to develope a damping flexible coupling which has a high performance of control for the torsional vibrations of power shafts in a large machinery. The damping flexible coupling is manufactured and is compared for dynamic characteristics with other type coupling which is the Geislinger coupling. The static coefficient of stiffness and the damping coefficient allows the control of excitation frequency through a cam driver. The experimental results obtained from the two couplings are compared with the theoretically results.

  • PDF

Torsional Vibration Analysis of Shaft System Using Transfer Dynamic Stiffness Coefficient (동강성계수의 전달을 이용한 축계의 비틀림진동 해석)

  • Moon, D.H.;Choi, M.S.;Sim, J.M.
    • Journal of Power System Engineering
    • /
    • v.1 no.1
    • /
    • pp.91-97
    • /
    • 1997
  • Recently, it is increased by degrees to construct complex and large structures. In general, in order to solve the dynamic problem of these structures they have used finite element method(FEM). In this method, however, it is necessary to prove whether its results are correct or not. Therefore it requires much effort, time and many expenses for dynamic analysis of complex and large structures. Authors have developed the transfer dynamic stiffness coefficient method(TDSCM) which is the new vibration analysis method for complex and large structures on personal computer, and confirmed that the results of this method are good for these structures on personal computer. In this paper, TDSCM is applied to the torsional vibration analysis for the shaft system which consist of concentrated disks and shafts of continuous body. First, we formulate algorithms for torsional free and forced vibration analysis, and compare the results of TDSCM and FEM.

  • PDF

Analysis on the dynamic characteristics of RAC frame structures

  • Wang, Changqing;Xiao, Jianzhuang
    • Structural Engineering and Mechanics
    • /
    • v.64 no.4
    • /
    • pp.461-472
    • /
    • 2017
  • The dynamic tests of recycled aggregate concrete (RAC) are carried out, the rate-dependent mechanical models of RAC are proposed. The dynamic mechanical behaviors of RAC frame structure are investigated by adopting the numerical simulation method of the finite element. It is indicated that the lateral stiffness and the hysteresis loops of RAC frame structure obtained from the numerical simulation agree well with the test results, more so for the numerical simulation which is considered the strain rate effect than for the numerical simulation with strain rate excluded. The natural vibration frequency and the lateral stiffness increase with the increase of the strain rate. The dynamic model of the lateral stiffness is proposed, which is reasonably applied to describe the effect of the strain rate on the lateral stiffness of RAC frame structure. The effect of the strain rate on the structural deformation and capacity of RAC is analyzed. The analyses show that the inter-story drift decreases with the increase of the strain rate. However, with the increasing strain rate, the structural capacity increases. The dynamic models of the base shear coefficient and the overturning moment of RAC frame structure are developed. The dynamic models are important and can be used to evaluate the strength deterioration of RAC structure under dynamic loading.

Prediction of Modified Structural Natural Frequencies and Modes using Interative Sensitivity Coefficient (감도계수 반복법을 이용한 구조물의 고유진동수 및 고유벡터 변화량 예측)

  • 이정윤
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.5
    • /
    • pp.40-46
    • /
    • 2000
  • This study predicts the modified structural eigenvector and eigenvalue due to the change in the mass and stiffness of 2-dimesional continuous system by iterative calculation of the sensitivity coefficient using the original dynamic characteristic. The method is applied to examples of a crank shaft by modifing the mass and stiffness. The predicted dynamics characteristics are in good agreement with these from the structural analysis using the modified mass and stiffness. The predicted dynamic characteristics are in good agreement with these from the structural analysis using the modified mass and stiffness.

  • PDF

A Sensitivity Coefficient Analysis by the Change of Dynamic Characteristics of the Structure (구조물의 동특성 변화에 따른 감도계수 해석)

  • 이정윤
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.682-686
    • /
    • 2002
  • This study predicts the sensitivity coefficient by the change of dynamic Characteristics of the Structure. The method is applied to examples of a cantilever and 3 degree of freedom lumped mass model by modifying the mass and stiffness. The predicted the sensitivity coefficient are in good agreement with these from the structural reanalysis using the modified mass and stiffness.

  • PDF

Forced vibration analysis of beam-like structures by the combination and transfer of dynamic stiffness coefficient (동강성계수의 조합 및 전달에 의한 보형 구조물의 강제진동 해석)

  • 문덕홍;최명수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.1
    • /
    • pp.21-27
    • /
    • 1998
  • The authors have developed the transfer dynamic stiffness coefficient method(TDSCM) which is based on the concepts of the substructure synthesis method and transfer influence coefficient method. As a result, we suggested the algorithm for free vibration analysis of beam-like structures which are mainly found in mechanical design by applying the TDSCM in the previous reports. In this paper, we extend this algorithm to the forced vibration analysis for them. And we also confirmed the merits of this method.

  • PDF