• Title/Summary/Keyword: Dynamic characteristic simulation

Search Result 363, Processing Time 0.034 seconds

The Study of Dynamic Characteristic of PMLSM According to Variable Load (영구자석형 선형 동기 전동기의 가변부하에 따른 동특성 해석)

  • Lee, Seung-Hoon;Jang, Ki-Bong;Kim, Gyu-Tak
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.4
    • /
    • pp.596-602
    • /
    • 2008
  • This paper presents the dynamic characteristic analysis of Permanent Magnet Linear Synchronous Motor(PMLSM) according to variable load. In order to analyze dynamic characteristics, finite element method(FEM) was used for calculation of the parameter and the Matlab simulink was used for dynamic characteristic simulation. The measuring system of the dynamic characteristics was manufactured and the experiment results were compared with the simulation results.

Analysis on Dynamic Characteristic and Circuit Parameter of Linear Switched Reluctance Motor by Electromagnetic Analytical Method (전자기 해석법에 의한 직선형 스위치드 릴럭턴스 전동기의 회로정수 도출 및 동특성 해석)

  • Park, Ji-Hoon;Ko, Kyoung-Jin;Choi, Jang-Young;Jang, Seok-Myeong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.2
    • /
    • pp.318-327
    • /
    • 2010
  • This paper deals with analysis on dynamic characteristic and circuit parameter of linear switched reluctance motor by electromagnetic analytical method. Above all, using space harmonic method, which is electromagnetic method, the air-gap flux density is analyzed in the both align and unaign positions, and the inductance profile, force characteristic and resistance per phase are calculated by means of the process. The validity of the analyzed results are demonstrated by the finite element method(FEM) and manufacture of the prototype machine. Second, the dynamic simulation is analyzed by the use of circuit parameters derived from analytical method, and the operating system of the prototype machine is manufactured to demonstrated the validity of simulation analysis. As a result, it is considered that the characteristic equation suggested in this paper will contribute to the design, analysis and application of LSRM.

A Study on Flow Rate Characteristic and Dynamic Performance on Diaphragm Solenoid Valve (다이어프램형 밸브의 유량특성과 동적성능에 관한 연구)

  • Jeong, C.S.;Yang, S.Y.
    • Journal of Drive and Control
    • /
    • v.10 no.3
    • /
    • pp.27-33
    • /
    • 2013
  • Solenoid valve has used in various industrial field extensively. A solenoid valve has different size, shape and method of operation accordantly to industrial field. Many researchers study on kinds of solenoid valve such as flow rate, dynamic, magnetic field, valve shape and operating method. But the flow rate characteristic and dynamic response time performance on the diaphragm valve are not studied. This paper describes the flow rate characteristic and dynamic response time performance on the diaphragm valve. At first, the diaphragm valve is simulated in AMESim simulation tool. AMESim model found that an effect of valve performance depends on parameter. The parameter is the diaphragm orifice area. And the performance test bench confirms the effect in this parameter. Finally, it finds out the flow rate characteristic and dynamic response time performance on the diaphragm valve.

The Generating Characteristic Analysis of Permanent Magnet Machines with Multi-Pole Rotor Considering Losses (손실을 고려한 영구자석형 다극 기기의 발전특성해석)

  • Jang, Seok-Myeong;Choi, Jang-Young;Ko, Kyoung-Jin;Lee, Sung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2007.10c
    • /
    • pp.47-49
    • /
    • 2007
  • This paper deals with the generating characteristic analysis of permanent magnet (PM) machines with multi-pole rotor and 3-phase stator windings considering losses such as copper loss, iron loss and mechanical loss. First, using d-q transformation, dynamic equations of PM machines are established. And then, characteristic equations for losses, power and efficiency are also derived. On the basis of d-q dynamic equations and characteristic equations, dynamic simulation algorithm is achieved by the MATLAB/SIMULINK. The simulation results are validated extensively by finite element (FE) analyses.

  • PDF

Force Characteristic Analysis of Linear Switched Reluctance Motor using Dynamic Simulation (동특성 시뮬레이션을 이용한 리니어 스위치드 릴럭턴스 전동기의 힘 특성 해석)

  • Jang, Seok-Myeong;Park, Ji-Hoon;Park, Yu-Seop;Kim, Jin-Soon;Choi, Ji-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.58-60
    • /
    • 2009
  • This paper deals with force characteristic analysis of linear switched reluctance motor using dynamic simulation. First, we calculated flux density of linear switched reluctance motor according to position. Second, analyzed normal force from flux density of linear switched reluctance motor according to position. Also, analysis result compares with data that is derived through a finite element analysis, and proved validity. However, linear switched reluctance motor has non linear characteristic, hence, analysis of propulsion force do not easy using analytical method. Therefore, we presented dynamic characteristic analysis model which is consisted at motor and sensor signal part, etc., and substitute circuit constant that get using magnetic equivalent circuit method, we confirmed propulsion force.

  • PDF

Dynamic modeling and three-dimensional motion simulation of a disk type underwater glider

  • Yu, Pengyao;Wang, Tianlin;Zhou, Han;Shen, Cong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.3
    • /
    • pp.318-328
    • /
    • 2018
  • Disk type underwater gliders are a new type of underwater gliders and they could glide in various directions by adjusting the internal structures, making a turnaround like conventional gliders unnecessary. This characteristic of disk type underwater gliders makes them have great potential application in virtual mooring. Considering dynamic models of conventional underwater gliders could not adequately satisfy the motion characteristic of disk type underwater gliders, a nonlinear dynamic model for the motion simulation of disk type underwater glider is developed in this paper. In the model, the effect of internal masses movement is taken into consideration and a viscous hydrodynamic calculation method satisfying the motion characteristic of disk type underwater gliders is proposed. Through simulating typical motions of a disk type underwater glider, the feasibility of the dynamic model is validated and the disk type underwater glider shows good maneuverability.

Implementation of The Fluid Circulation Blood Pressure Simulator (유체 순환 혈압 시뮬레이터의 구현)

  • Kim, C.H.;Lee, K.W.;Nam, K.G.;Jeon, G.R.
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.6
    • /
    • pp.768-776
    • /
    • 2007
  • A new type of the fluid circulation blood pressure simulator was proposed to enhance the blood pressure simulator used for the development and evaluation of automatic sphygmomanometers. Various pressure waveform of fluid flowing in the pipe was reproduced by operating the proportional control valve after applying a pressure on the fluid in pressurized oil tank. After that, appropriate fluid was supplied by operating the proportional control valve, which enabled to reproduce various pressure wave of the fluid flowing in the tube. To accomplish this work, the mathematical model was carefully reviewed in cooperating with the proposed simulator. After modeling the driving signal as input signal and the pressure in internal tube as output signal, the simulation on system parameters such as internal volume, cross-section of orifice and supply pressure, which are sensitive to dynamic characteristic of system, was accomplished. System parameters affecting the dynamic characteristic were analyzed in the frequency bandwidth and also reflected to the design of the plant. The performance evaluator of fluid dynamic characteristic using proportional control signal was fabricated on the basis of obtained simulation result. An experimental apparatus was set-up and measurements on the dynamic characteristic, nonlinearity, and rising and falling response was carried out to verify the characteristic of the fluid dynamic model. Controller was designed and thereafter, simulation was performed to control the output signal with respect to the reference input in the fluid dynamic model using the proposed proportional control valve. Hybrid controller combined with an proportional controller and feed-forward controller was fabricated after applying a disturbance observer to the control plant. Comparison of the simulations between the conventional proportional controller and the proposed hybrid simulator indicated that even though the former showed good control performance.

The Dynamic Characteristic Analysis of PMLSM according to Variable Load (부하 가변에 따른 리니어 모터의 동특성 해석)

  • Lee, Seung-Hoon;Jeong, Su-kwon;Kim, Gyu-Tak
    • Proceedings of the KIEE Conference
    • /
    • 2006.10d
    • /
    • pp.83-85
    • /
    • 2006
  • In this paper, the dynamic characteristic according to variable load of Permanent magnet Linear Synchronous Motor(PMLSM) is dealt with carefully. And the experiment machine is manufactured for analysis of dynamic characteristic. The results of both simulation and experiment are discussed.

  • PDF

Transient Simulation of CMOS Breakdown characteristics based on Hydro Dynamic Model (Hydro Dynamic Model을 이용한 CMOS의 파괴특성의 Transient Simulation해석)

  • Choi, Won-Cheol
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.5 no.1
    • /
    • pp.39-43
    • /
    • 2002
  • In present much CMOS devices used in VLSI circuit and Logic circuit. With increasing a number of device in VLSI, the confidence becomes more serious. This paper describe the mechanism of breakdown on CMOS, especially n-MOS, based on Hydro Dynamic model with device self-heating. Additionally, illustrate the CMOS latch-up characteristics on simplified device structure on this paper.

  • PDF

Dynamic behavior of GMA considering metal transfer (금속이행을 고려한 GMA 용접 시스템의 동특성 해석)

  • 박세홍;김면희;강세령;최상균;이상룡
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.565-568
    • /
    • 2002
  • Welding variables and conditions in gas metal arc welding (GMAW) effect on the weld quality and productivity, extensive research efforts have been made to analyze the welding variables and conditions. In this study dynamic behavior of GMAW system is investigated using the characteristic equations of the power supply, wire and welding arc. Characteristic equation of wire is modified to include the effect of droplets attached at the electrode tip. The dynamic characteristics of arc length, current, voltage with respect to the step, ramp inputs of CTWD was simulated, seam tracking procedure using arc sensor was simulated with variable V-Groove geometries and weaving frequencies. From results of simulation, some predictions about dynamic characteristics of GMAW and welding process are available. The proposed simulator and results appear to be utilized to determine the proper welding conditions, to be improved by considering power supply dynamic characteristics.

  • PDF