• 제목/요약/키워드: Dynamic centrifuge model test

검색결과 50건 처리시간 0.026초

유효응력모델을 이용한 침매터널의 동적거동 해석 (Dynamic Analysis of an Immersed Tunnel using an Effective Stress Model)

  • 박성식;문홍득
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 춘계 학술발표회 초청강연 및 논문집
    • /
    • pp.51-58
    • /
    • 2008
  • The George Massey immersed tunnel passes the Fraser River near Vancouver, Western Canada. In this paper, dynamic analysis of the tunnel on sandy soils was performed using an effective stress constitutive model called UBCSAND. This model is able to calculate pore pressure rise and resulting tunnel deformation due to cyclic loading. Centrifuge tests conducted at RPI are used to verify the model performance. Centrifuge tests consist of 3 models: Model 1 is designed for an original ground condition, Model 2 for a ground improvement by compaction method, Model 3 for a ground improvement by gravel drainage. The results of centrifuge Model 1 are presented and compared with predictions of UBCSAND model. This model well captured the results of centrifuge test and therefore can be used to predict dynamic behavior of similar tunnels or underground structures on sandy soils.

  • PDF

Nonlinear numerical analyses of a pile-soil system under sinusoidal bedrock loadings verifying centrifuge model test results

  • Kim, Yong-Seok;Choi, Jung-In
    • Geomechanics and Engineering
    • /
    • 제12권2호
    • /
    • pp.239-255
    • /
    • 2017
  • Various centrifuge model tests on the pile foundations were performed to investigate fundamental characteristics of a pile-soil-foundation system recently, but it is hard to find numerical analysis results of a pile foundation system considering the nonlinear behavior of soil layers due to the dynamic excitations. Numerical analyses for a pile-soil system were carried out to verify the experimental results of centrifuge model tests. Centrifuge model tests were performed at the laboratory applying 1.5 Hz sinusoidal base input motions, and nonlinear numerical analyses were performed utilizing a finite element program of P3DASS in the frequency domain and applying the same input motions with the intensities of 0.05 g~0.38 g. Nonlinear soil properties of soil elements were defined by Ramberg-Osgood soil model for the nonlinear dynamic analyses. Nonlinear numerical analyses with the P3DASS program were helpful to predict the trend of experimental responses of a centrifuge model efficiently, even though there were some difficulties in processing analytical results and to find out unintended deficits in measured experimental data. Also nonlinear soil properties of elements in the system can be estimated adequately using an analytical program to compare them with experimental results.

동적원심모형 시험을 이용한 부지응답해석 검증시 입력 지진의 결정 (Appropriate Input Earthquake Motion for the Verification of Seismic Response Analysis by Geotechnical Dynamic Centrifuge Test)

  • 이진선
    • 한국지진공학회논문집
    • /
    • 제17권5호
    • /
    • pp.209-217
    • /
    • 2013
  • In order to verify the reliability of numerical site response analysis program, both soil free-field and base rock input motions should be provided. Beside the field earthquake motion records, the most effective testing method for obtaining the above motions is the dynamic geotechnical centrifuge test. However, need is to verify if the motion recorded at the base of the soil model container in the centrifuge facility is the true base rock input motion or not. In this paper, the appropriate input motion measurement method for the verification of seismic response analysis is examined by dynamic geotechnical centrifuge test and using three-dimensional finite difference analysis results. From the results, it appears that the ESB (equivalent shear beam) model container distorts downward the propagating wave with larger magnitude of centrifugal acceleration and base rock input motion. Thus, the distortion makes the measurement of the base rock outcrop motion difficult which is essential for extracting the base rock incident motion. However, the base rock outcrop motion generated by using deconvolution method is free from the distortion effect of centrifugal acceleration.

포화된 경사 사질토 지반의 액상화 수치모델 거동평가 (Evaluation of Liquefaction Model using Dynamic Centrifuge Test)

  • 이진선;이상운
    • 한국지반공학회논문집
    • /
    • 제38권11호
    • /
    • pp.31-42
    • /
    • 2022
  • 본 논문에서는 원심모형시험을 이용한 국제공동연구인 LEAP-2017의 결과를 이용하여 액상화 수치모델의 거동에 대한 검증을 실시하였다. 동적원심모형시험은 Ottawa F-65모래로 수면 아래 조성된 경사각 5°의 지반에 1Hz 테이퍼형 사인파를 가진하여 시행되었다. 원심모형시험의 원형스케일로 모델링 된 수치해석 모델은 유한차분법을 이용한 2차원 및 3차원 해석을 시행하였다. 수치해석의 검증은 깊이별 가속도와 간극수압 시간이력, 잔류변위에 대해 이루어 졌다. 검증결과, 모든 모델에서 시험과 유사한 가속도 시간이력을 나타내었으나, 일부모델이 나타내는 간극수압의 변화는 시험결과와 차이를 나타내었다. 수치해석결과로 나타난 액상화 후 잔류변위는 원심모형시험 대비 매우 작은 크기로 확인되어, 이에 대해서는 추후 LEAP-2017에 참여한 다른 기관의 시험결과와 비교분석이 필요한 것으로 확인되었다.

원심모형 실험을 통한 궤도지지말뚝구조의 동적 거동 평가 (Dynamic Behavior Evaluation of Pile-Supported Slab Track System by Centrifuge Model Test)

  • 유민택;이명재;백민철;추연욱;이일화
    • 한국지반공학회논문집
    • /
    • 제35권2호
    • /
    • pp.5-17
    • /
    • 2019
  • 철도하중 및 지진하중 재하 시 궤도지지말뚝 구조의 동적 거동 평가를 위해 동적원심모형 실험을 수행하였다. 실험의 변수는 연약지반의 깊이와 성토체의 높이로 결정하였으며, 총 4가지 경우에 대해 실험을 수행하였다. 연약지반 깊이는 실제 연약지반층에 고속철도를 부설한 호남고속철도의 익산-정읍 구간의 시추주상도를 분석하여 결정하였으며, 성토체의 높이는 일반적인 고속철도의 성토체 높이 범위의 하한 값과 상한 값으로 결정하였다. 실험 결과, 연약지반 깊이 대비 성토체 높이 비율이 높을 수록 말뚝에 작용하는 최대 휨모멘트 값이 크게 평가되었다. 또한, 실험조건 내에서 부설되는 궤도지지말뚝 구조는 단주기 지진파에 대해서는 국내 내진설계 기준의 최대 지진하중인 0.22g에 대해서까지 안전한 것으로 확인되었다. 그러나, 장주기 지진파에 대해서는 재현주기 2400년 지진인 0.22g로 가진시 말뚝의 균열 모멘트가 초과되었다. 일련의 실험결과를 바탕으로, 본 논문에 기술된 연약지반 깊이와 성토체 높이 범위 내에서 궤도지지말뚝 일반 단면에 대한 연약지반 대비 성토체 높이 비율 기준을 제시하였다.

액상화 지반에 대한 1-g 모형실험과 원심모형실험의 비교 연구 (Comparison of 1-g and Centrifuge Model Tests on Liquefied Sand Grounds)

  • 김성렬;황재익;;김명모
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2006년도 학술발표회 논문집
    • /
    • pp.97-104
    • /
    • 2006
  • The centrifuge and 1-g shaking table tests were performed simultaneously to compare the dynamic behaviors of loose sands of same geotechnical properties. The prototype soils were 10 m thick liquefiable loose sands. The geometric scaling factors were 20 for 1-g and 40 for centrifuge tests. The excess pore pressure, surface settlement, and acceleration in the soil were measured at the same locations in the 1-g and centrifuge tests. The total excess pore pressure from development to dissipation was measured. In the centrifuge test, viscous fluid was used as the pore water to eliminate the time scaling difference between dynamic time and dissipation time. In the 1-g tests, the steady state concept was applied to determine the unit weight of the model soil, and two different time scaling factors were applied for the dynamic time and the dissipationtime. It is concluded that the 1-g tests can simulate the excess pore pressure of the prototype soil if the permeability of the model soil is small enough to prevent dissipation of excess pore pressure during shaking and the dissipation time scaling factor is properly determined.

  • PDF

Evaluation of the effect of rubble mound on pile through dynamic centrifuge model tests

  • Jungwon Yun;Jintae Han
    • Geomechanics and Engineering
    • /
    • 제33권4호
    • /
    • pp.415-425
    • /
    • 2023
  • Pile-supported wharves, port structures that support the upper deck, are installed on sloping ground. The sloping ground should be covered with a rubble mound or artificial blocks to protect the interior material from erosion caused by wave force. The behavior of the pile may vary during an earthquake if a rubble mound is installed on the slope. However, studies evaluating the effect of rubble mound on the pile during an earthquake are limited. Here, we performed dynamic centrifuge model tests to evaluate the dynamic behavior of piles installed in a slope reinforced with rubble mound. In the structure, some sections (single-pile, 2×2 group-pile) were selected for the experiment. The moment of the group-pile decreased by up to 26% upon installation of the rubble mound, whereas the moment of the single-pile increased by up to 41%, thus demonstrating conflicting results.

On validation of fully coupled behavior of porous media using centrifuge test results

  • Tasiopoulou, Panagiota;Taiebat, Mahdi;Tafazzoli, Nima;Jeremic, Boris
    • Coupled systems mechanics
    • /
    • 제4권1호
    • /
    • pp.37-65
    • /
    • 2015
  • Modeling and simulation of mechanical response of infrastructure object, solids and structures, relies on the use of computational models to foretell the state of a physical system under conditions for which such computational model has not been validated. Verification and Validation (V&V) procedures are the primary means of assessing accuracy, building confidence and credibility in modeling and computational simulations of behavior of those infrastructure objects. Validation is the process of determining a degree to which a model is an accurate representation of the real world from the perspective of the intended uses of the model. It is mainly a physics issue and provides evidence that the correct model is solved (Oberkampf et al. 2002). Our primary interest is in modeling and simulating behavior of porous particulate media that is fully saturated with pore fluid, including cyclic mobility and liquefaction. Fully saturated soils undergoing dynamic shaking fall in this category. Verification modeling and simulation of fully saturated porous soils is addressed in more detail by (Tasiopoulou et al. 2014), and in this paper we address validation. A set of centrifuge experiments is used for this purpose. Discussion is provided assessing the effects of scaling laws on centrifuge experiments and their influence on the validation. Available validation test are reviewed in view of first and second order phenomena and their importance to validation. For example, dynamics behavior of the system, following the dynamic time, and dissipation of the pore fluid pressures, following diffusion time, are not happening in the same time scale and those discrepancies are discussed. Laboratory tests, performed on soil that is used in centrifuge experiments, were used to calibrate material models that are then used in a validation process. Number of physical and numerical examples are used for validation and to illustrate presented discussion. In particular, it is shown that for the most part, numerical prediction of behavior, using laboratory test data to calibrate soil material model, prior to centrifuge experiments, can be validated using scaled tests. There are, of course, discrepancies, sources of which are analyzed and discussed.

유효응력모델을 이용한 동적 원심모형실험의 수치해석 (Numerical Analysis of Dynamic Centrifuge Model Tests Using an Effective Stress Model)

  • 박성식;김영수
    • 한국지반공학회논문집
    • /
    • 제22권1호
    • /
    • pp.25-34
    • /
    • 2006
  • 본 연구에서는 비교적 높은 초기 유효응력을 가진 지반구조물의 액상화연구에 사용된 동적 원심모형실힘결과를 이용하여 유효응력모델검증에 관한 연구를 수행하였다. 원심모형 지반은 최대 유효응력 380kPa를 가진 충분히 포화된 느슨한 Nevada 모래 지반으로 구성되었으며, 수치해석에서는 1차원의 기둥형태로 가정하였다. 수치해석에 이용한 두 종류의 원심모형실험에서는 상당한 깊이(37m 및 22m)까지도 액상화가 발생하였으나, 깊이에 따른 액상화발생 경향은 경험적 액상화 평가방법과 상반된 결과를 보였다. 즉, 원심모형실험에서 계측된 과잉간극수압을 기준으로 해석하였을 때, 액상화는 모형지반의 윗부분에서 먼저 발생한 후 점차적으로 아랫부분으로 이동함을 알았다. 이와 같은 실험결과는 수치해석에서 비교적 잘 예측된 것으로 판단되었다 원심모형 지반의 초기 포화도와 원심력 증가에 따른 지반의 상대밀도 증가가 액상화모형실험의 수치해석에서 중요한 역할을 함을 알 수 있었다.

원심모형실험을 활용한 얕은 기초가 있는 다자유도 구조물의 지진응답 (Seismic Responses of Multi-DOF Structures with Shallow Foundation Using Centrifuge Test)

  • 김동관;김호수;김진우
    • 한국지진공학회논문집
    • /
    • 제26권3호
    • /
    • pp.117-125
    • /
    • 2022
  • In this study, centrifuge model tests were performed to evaluate the seismic response of multi-DOF structures with shallow foundations. Also, elastic time history analysis on the fixed-base model was performed and compared with the experimental results. As a result of the centrifuge model test, earthquake amplification at the fundamental vibration frequency of the soil (= 2.44 Hz) affected the third vibration mode frequency (= 2.50 Hz) of the long-period structure and the first vibration mode (= 2.27 Hz) of the short-period structure. The shallow foundation lengthened the periods of the structures by 14-20% compared to the fixed base condition. The response spectrum of acceleration measured at the shallow foundation was smaller than that of free-field motion due to the foundation damping effect. The ultimate moment capacity of the soil-foundation system limited the dynamic responses of the multi-DOF structures. Therefore, the considerations on period lengthening, foundation damping, and ultimate moment capacity of the soil-foundation system might improve the seismic design of the multi-DOF building structures.